
717MlfL fPJra1~©ra10

!PJ@ (/@if@f1tJ©@ !Ml~f1tJ (fjJ ral0 [S(fjJiPJiPJO@WiJ@f1tJff

This supplement documents additional TML Pascal language features that were omitted from the TML
Pascal Reference Manual and corrects information which was printed in error. This document is organized
by the chapters and chapter sections which are affected by the omissions.

Chapter 1 - Tokens

Character~Strlngs

In order to support the definition of Menus for the Apple IIGS Menu Manager, the scanner for Pascal string
literals has been changed to interpret an occrance of the characters \0' as a single character whose value is
equivalent to Chr(O). The Chr(O) value is needed in the string literal as a separator between menu items.

Example: '»FileIN30010==Open". 1N3011O==-IN302DIO.'

Chapter 5 ~ Expressions

The @ 'operator

The operand types allowed for the @ operator has been extended to allow quoted Pascal string literals.

Example: @TML Pascal'

Chapter 10 - Standard Procedures and Functions

Miscellaneous Functions

The MoveLeft Procedure

Syntax: MoveLeft(source, dest, count)

MoveLeft copies a block of count contiguous bytes of storage from source to dest beginning at the lowest
memory address of the blocks (the first byte of source and desQ. Source and dest are variable references
of any type. Count is an integer expression. When source and dest overlap, you should use this
procedure if source is at the higher memory address.

TMLPascal Reference Manual Supplement

The MoveRight Procedure

Syntax: MoveRight(source, dest, count)

MoveRight copies a block of count contiguous bytes of storage from source to dest beginning at the
highest memory address of the blocks (the last byte of source and desQ. Source and dest are variable
references of any type. Count is an integer expression. When source and dest overlap, you should use
this procedure if source is at the lower memory address.

The FiIIChar Procedure

Syntax: FiIlChar(dest, count, ch)

FiliChar fills a block of count contiguous bytes of storage with the specified value ch beginning at the
address of dest. Dest is a variable reference of any type, count is an integer expression, and ch is a value
of an ordinal type.

The ScanEq Function

Syntax: ScanEq(limil, ch, source)
Result: Integer

ScanEq scans a block of memory beginning at source for the first occurance of the value ch. The scan~
proceeds until the value ch is found, or until limit bytes of memory have been scanned. If ch is not found
within limit bytes of memory from the beginning of source, the value returned Is equal to limit. Otherwise,
the value returned is the number of bytes scanned before the value ch was found.

The Scaneq Function

Syntax: ScanNe(limit, ch, source)
Result: Integer

ScanNe operates the same as ScanEq except that it scans for the first byte not equal to ch.

Appendix B • Compiler Directives

Too/Error Check

($TooIErrorChk+) or ($TooIErrorChk-)

Default: ($TooIErrorChk+)

This directive allows an application to control the automatic generation of error checking code for Apple
IIGS Toolbox calls. As discussed in Chapter 5 of the User's Guide and Chapter 10 of the Reference
Manual, TML Pascal generates a STA ToolErrorNum instruction after every call to a Toolbox routine so
that the special TML Pascal global variable ToolErrorNum always contains the error code of the most
recently called Toolbox routine. A non-zero ToolErrorNum indicates an error occured during the
execution of the last Toolbox routine, and the value of ToolErrorNum is an error code that can be used to
determine the cause of the error.

TMLPascal 2 Reference Manual Supplement

In many cases, an application does not need to check the value of ToolErrorNum after Toolbox calis, and
would rather not have the STA ToolErrorNum instruction generated in order to decrease the code size
of an application. To achieve this, the $ToolErrorChk directive is turned off.

See the section How Calling a Tool Routine Works in Chapter 5 of the User's Guide.

Unit Symbol File Search Prefix

{$P ProDOS16 prefix}

Default: {$P 0/ }

This option allows an application to specify any legal ProDOS16 prefix for the purposes of searching for
unit symbol files (.USYM files). The TML Pascal compiler does not recompile the interface part of units
specified in a USES clause, but rather loads a precompiled symbol table of the declarations in a unit from a
.USYM file. To search for these files, TML Pascal maintains a current unit prefix used to create the full
pathname of a .USYMfile. The default prefix is "OJ" which is the ProDOS16 prefix for the current directory.
This unit prefix can be changed to any legal prefix using this compiler directive. For example,

USES QDIntf,
{$P /TML/MYSTUFF/ } HandyRoutines;

Note that if a .USYM file cannot be found using the compiler's unit prefix the compiler will also attempt to
find the file by using the ProDOS16 prefix 7. If the file cannot be found in either of these locations and
error is reported.

Appendix C - Inside TML Pascal

The Stdeo/ars Array

TML Pascal's ConsolelO.Pas unit implements the routine

PROCEDURE SetDithColor{Color: Integer);

for the purpose of setting the OuickDraw pen "color" to a value between 0 and 15 inclusive for the Super
HiRes 640 mode. ;[,he routine is provided for beginning programmers generally using the compiler's Plain
Vanilla type of applications so that they can easily use more than the four true colors available in 640
mode. In actuality, the SetDithColor routine changes the OuickDraw pen pattern to take advantage of a
technique known as dithering. Dithering is the technique of alternating colors very close together in a
pattern, to give the appearance of another color. The SetDithColor routine uses 16 different patterns
which are defined in the array

VAR stdColors: array[O .. 15] of Pattern;

StdColors[O] contains a pattern defined by 16 words of $0000, StdColors[1] contains a pattern defined by
16 words of $1111, etc. Finally, StdColors[15] contains a pattern defined by 16 words of $FFFF.

Applications not using the ConsolelO.Pas unit may still access this array of patterns. The array variable
StdColors is declared in the TMLPASCALLIB runtime library and may be accessed using TML Pascal's
$XrefVar directive. Consider the following program fragment.

TMLPascal 3 Reference Manual Supplement

PROGRAM ColorPatsDemoi

USES QDIntfi

{$XrefVar+}
VAR stdColors: array[O .. 15) of Patterni
{$XrefVar- }

BEGIN

SetPenPat(StdColors[3)li
LineTo(lO,20)i
FillRect(r,StdColors[5)li

END.

TMLPascal 4 Reference Manual Supplement

