
GNO Shell User's Manual
By Tim Meekins, Albert Chin, and Jawaid Bazyar

Edited by Andrew Roughan

Table of Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Glossary
Index

Getting started with the GNO Shell 3
Introduction .. 3
Customizing the Shell Environment 3
Invoking gsh .. 5
Interacting with the GNO Shell 7
Executing Commands .. 7
Command-line Editor.. ... ?
Command Input. .. 8
Command Editing ... 8
History Editing Keys ... 9
Command, Filename and Variable completion 1 0
Using the GNO Shell more productively 13
What does this command do? ... 13
Option Arguments .. 13
Entering Multiple commands .. 15
Using Aliases as Shorthand ... 15
Redirecting Input and Output .. 16
Pipelines ... 16
Background Execution of Commands 17
Job Control .. 19
Working with Path names .. 21
Pathname Expansion ... 22
Quoting Special Characters .. 23
How gsh Finds a Command ... 24
Built-in Commands ... 25
Built-ins vs EXE Commands .. 25
Shell Commands .. 25
Kernel Commands .. 29
Environment Commands ... 30
Shell Variables ... 3 3
Using shell variables ... 33
Scope ... 33
Description of Pre-defined Shell Variables 33
Accessing shell variables .. .35
Sample gsh session .. 3 9
Prefix Conventions ... 4 5
Errors ... 4 6
Signals .. 49
Non-Compliant Applications 5 0
Termcaps ... 51
.. 53
.. 55

Chapter 1
Getting started with the GNO Shell

"Computer operating systems are among the most complex objects created by mankind ... "
Douglas Comer, Operating System Design, The Xinu Approach

Introduction

The GNO shell is an integral part of the GNO Multitasking Environment (GNO/ME). The GNO shell
provides the interface between the user and the GNO Kernel. While both work together, the jobs they
perform are quite different. This manual documents the functions of the shell.

The user interacts with the shell through a command-line interface. Command-line interfaces provide a
unique way of interacting with the operating system. Unlike GUis (Graphical User Interfaces), with
which you are already familiar with by using programs such as the Finder and Shrinklt! GS, ail
commands are typically entered using the keyboard. The shell interprets commands and passes them to the
kernel for control and execution.

The command-line interface will be unfamiliar to some people However, once the command-line interface
has been mastered, the user should have no difficulty using any current or future GNO applications.
Those of you already familiar with Unix interfaces, such as the C shell, Bourne shell, and Korn shell, or
the ORCA shell on the Apple IIGS, will begin to realize the advantages which GNO/ME is able to provide.

The way this manual is presented allows the complete beginner to simply work through the chapters in a
chronological prder. Chapter 2 familiarises the user with entering basic commands whereas the more
powerful GNO/ME features are introduced in Chapter 3. Chapter 4 documents the commands which are
built into the GNO Shell and Chapter 5 explains shell variables which give the user control over how thier
installation functions.

Customizing the Shell Environment

When gsh, the implimentation of the GNO Shell, is executed, it reads in and processes the gshrc file. This
file contains start-up instructions for the shell, which can be used to customize the operation of the shell
and other aspects of the system. It is created by the GNO Installer during the installation process.

The following is a sample gshrc file (line numbers have been added for convenience):

GNO 2.0 gshrc file

Initialize our environment

set path=":hard:gno:bin :hard:gno:usr:bin"
set prornpt="[%h) %S%t%s %C> "
set horne=":hard:gno:user:root"
set terrn=gnocon
export path prompt horne term
setenv history=lOO savehist=25

line #1
line #2
line #3
line #4
line #5
line #6
line #7
line #8
line #9

line #10
line #11
line #12
line #13
line #14

3

Getting started with the GNO Shell

#Set up standard prefixes for utilities.

prefix 2 :software:orca:libraries
prefix 3 :software:orca
prefix 4 :software:orca:shell
prefix 5 :software:orca:languages
prefix 6 :software:orca:utilities
prefix 7 :tmp

Set up prefixes for Orca2.0(tm) 's benefit

prefix 13 :software:orca:libraries
prefix 14 :software:orca
prefix 15 :software:orca:shell
prefix 16 :software:orca:languages
prefix 17 :software:orca:utilities
alias ls 'ls -CF'
alias dir 'ls -al'
alias cp 'cp -i'
alias rm 'cp -p rm'
alias mv 'cp -p mv'
setenv usrman='/usr/man'
set fignore=' .a .root .syrn'
alias zcat 'compress -cd'
setenv pager=less
setenv less=-e
set nonewline=1

Move to home directory

cd

Chapter 1

line #15
line #16
line #17
line #18
line #19
line #20
line #21
line #22
line #23
line #24
line #25
line #26
line #27
line #28
line #29
line #30
line #31
line #32
line #33
line #34
line #35
line #36
line #37
line #38
line #39
line #40
line #41
line #42
line #43
line #44
line #45
line #46
line #47
line #48
line #49
line #50

When you install GNO/ME, the GNO installer knows where to find the GNO utilities and any ORCA
utilities you may have. Unfortunately it does not know where all the other utilities and applications that
you may wish to use are located. It is therefore necessary to edit the setup file in order to tell the GNO
shell where these programs are on your hard disk.

The setup file, gshrc is located in the /usr directory of the path where you installed GNO/ME. You can use
any text editor from the desktop to edit the gshrc file, or if you are already familiar with the editor vi you
can use this utility after launching the GNO kernel.

Line 9 is the statement that we are concerned with. Hard represents the name of your particular hard drive
volume where you have installed GNO/ME.

set path=":hard:gno:bin :hard:gno:usr:bin" line #9

You will see that spaces have been inserted between pathnames. The space is the pathname separator and
the colon has been used as the path delimiter for this specific variable, PATH. As an exercise, add your
system directory to this statement. Line 9 should now look like this:

set path=":hard:gno:bin :hard:gno:usr:bin :hard:system•

4

Chapter 1 Getting started with the GNO Shell

What you have just done allows the GNO shell to find the Finder application. Now go ahead and add any
pathnames that hold utilities or applications that you will use frequently from GNO/ME. It should also be
noted that it is possible to have more than one pathname containing EXE, SYS16, or EXEC files; this is
impossible under ORCA. The PATH variable is discussed thoroughly in Chapter 5.

For now, the remaining lines of the gshrc file do not need editing. As you gain an understanding of the
system you may wish to make further changes to the gshrc file. Make sure you save the file before you
exit the editor.

It is possible to modify these instructions while the GNO shell is active, but any changes will be lost upon
exiting gsh. If you wish the changes to remain effective for the next session you must add them to the
gshrc file.

By customizing the gshrc file it is possible to make the GNO environment more like UNIX, the ORCA
environment, or something completly different. Customization of the GNO environment leads to greater
user productivity.

Invoking gsh

GNO/ME can be launched from a program launcher, such as the System 6.0 Finder. Launch the GNO
Kernel program, kern by double clicking on it. The GNO kernel automatically executes the supplied GNO
shell, gsh.

The prompt, "[1] 2:00am root%", indicates that gsh is ready to receive input from the keyboard.

To start a new gsh from the command-line simply type gsh. If multiple copies of the gsh process are.
undesirable, use the command source gsh instead. This is useful for testing changes made to the gshrc
file. Source is a built-in comand which is discussed in Chapter 4 Shell commands.

5

Getting started wnh the GNO Shell Chapter 1

6

Chapter 2
Interacting with the GNO Shell

Executing Commands

A command consists of two parts: a name and its arguments. The command name is the name used to start
the command. The name is usually the name of a file which can be executed. The only exceptions are
commands which are built-in to the shell. These commands are documented in Chapter 4 Built-In
Commands. Any shell utility command with a filetype of EXE, SYS 16, or EXEC can be executed in this
fashion. The command name must be separated from the command arguments with a space.

The command arguments are parameters that the command takes as data to work with (In Applesoft
BASIC, "HELLO WORLD" would be an argument for the PRINT command). Command arguments are
separated from each other with a space. Note that although arguments extend the usefulness of a
command, not all commands have arguments. Any arguments entered after the command will be passed by
the shell to the program when it starts exectuting.

The examples below use the following commands:
qt ime displays time in English text.
echo prints arguments to the screen.

Examples:
% qtime
It's almost five.
% echo :r:r Infinitum
II Infinitum

At the simplest level the user enters commands to the shell by typing them on_ the keyboard. Gsh includes
a command-line editor to help the user enter and edit commands. The editor also provides a way to modify
and execute previous commands. Additionally the editor can help complete the names of commands,
filenames and variables.

Command-line Editor

Below is a complete description of the functions of the command-line editor with short examples depicting
how each editing key works.

Throughout the examples the underline character, "_", will be used to represent the current cursor
position. In addition, "OA" is used to represent the Open Apple key and the term word is used to indicate a
string of characters consisting of only letters, digits, and underscores. To the right of a editing key entry is
the bindkey function name which is used to remap editing functions to new keys. This information is
included for reference purposes only. See Chapter 4 Shell Commands for more information on the
bindkey command.

It should be pointed out that at this stage that the user should not be concerned with what the actual
commands used in the examples do, rather the user should concentrate on how the command-line editor
functions work.

7

Interacting with the GNO Shell Chapter 2

Command Input

These command-line editor keys deal with entering text directly on the command-line.

RETURN

CTRL-D

CTRL-R

CTRL-L

newline
The return key is used to terminate line input. gsh then interprets the command on the line
and acts accordingly. The position of the cursor on the command-line does not matter.
Before
% echo f2,.o bar (RETURN)
After
foo bar
%

<no bindkey name>
Exits gsh if it was the first character typed on the command-line. If there are still jobs
running in the background or stopped, gsh will display "There are stopped jobs." If
you press CTRL-D a second time without an intervening command, gsh will terminate all
the jobs in the job list and exit.

redraw
Moves to the next line andre-displays the current command-line. Use this to redraw the
current line if the screen becomes garbled.

clear-screen
Clears the screen, moves the cursor to the top line, and redraws the prompt and any
command-line that was in the process of being edited.

Command Editing

These command-line editor keys allow editing of the command-line text.

CTRL-B backward-char
LEFT-ARROW Moves the cursor one character to the left. You cannot move past the first character on the

line. If so, gsh will output an error beep.
Before After
% print f.Q..o bar (LEFT-ARROW) % print Loo bar

CTRL-F forward-char
RIGHT-ARRow Moves the cursor one character to the right. You cannot move past the last character on the

DELETE

CLEAR
CTRL-X

8

line. If so, gsh will output an error beep.
Before
% print f2_o bar (RIGHT-ARROW)

backward-delete-char

After
% print fo.Q. bar

Deletes the character to the left of the cursor. You can delete up to the first character on the
command-line.
Before After
% print f.Q.o bar (DELETE) % print .Q..O bar

kill-whole-line
Deletes all characters on the command line and positions the cursor after the prompt.
Before After
% print_ foo bar (CTRL-X) %

Chapter2

CTRL-Y

CTRL-D
OA-D

CTRL-A
OA-<

CTRL-E
OA->

Interacting with the GNO Shell

kill-end-of-line
Deletes all characters from the cursor to the end of the command-line.
Before
% print f,2.o bar (CTRL-Y)

delete-char
Deletes the character under the cursor.
Before
% print fo.2. bar (OA-D)

beginning-of-line
Moves the cursor to the beginning of the line.

After
% print f

After
% print fo_bar

Before After
% print f.oo bar (OA-<) % :2_rint foo bar

end-of-line
Moves the cursor to the first position past the last character on the line.
Before After
% print .too bar (OA->) % print foo bar_

OA-RIGHT-ARROW forward-word
Moves the cursor right to the last character of the current word.
Before After
% print .too bar (OA-RIGHT-ARROW) % print fo.2. bar

OA-LEFT ARROW backward-word
Moves the cursor left to the beginning of the current word.
Before After
% print f.Q.o bar (OA-LEFT ARROW) % print .t_oo bar
% print foo)2.ar (OA-LEFT ARROW) % print !_oo bar

OA-E toggle-cursor .
Toggles input mode between insert and overstrike. Overstrike mode is distinguished by a
solid inverse cursor and insert mode by a blinking '_' cursor. In overstrike mode, any
characters that are typed directly over-write those characters below the cursor. In insert
mode, the characters typed are inserted before the character below the cursor.

History Editing Keys

These command-line editor keys allow access to previously entered commands. The GNO shell
automatically keeps track of previous commands in what is called a history buffer.

The maximum number of command-lines saved in the history buffer is determined by the shell variable
HISTORY. A default value for this variable is set in the gshrc file that the GNO Installer creates. The lines
saved to the history buffer are kept between sessions. That is, when you exit gsh, $sAVEHIST command
lines are saved to the history file in your $HOME directory. When gsh is invoked again, all command
lines saved in the history buffer will be available using history editing keys. See Chapter 5 Description
of Predefined Shell Variables for more informtation on the HISTORY and SAVEHIST variables.

9

Interacting with the GNO Shell Chapter 2

CTRL-P up-history
UP-ARROW Fetches the previous command-line. If the current command-line is the first line in the history

buffer, the next line fetched will be an empty command-line. If invoked again, the last line
in the history buffer will be displayed.
Before After
% print too bar
% echo Apple II
% echo GNO /MB
% (UP-ARROW) % echo GNO/KB_
% echo GNO/KB_ (UP-ARROW) % echo Apple II_

CTRL-N down-history
DOWN-ARROW Fetches the next command-line. If the current command-line is the last command line in the

history buffer, the next line fetched will be the first command-line in the history buffer.
Before After
% print foo bar
% echo Apple II
% echo GNO/ME
% (DOWN-ARROW)
% print too bar_ (DOWN-ARROW)

% print too bar_
% echo Apple II_

Command, Filename and Variable completion

These command-line editor keys can be used to complete filenames, commands and variables.

CTRL-D

TAB

10

list-choices
Lists commands and pathnames that match the current word.
Before
% print too_ bar (CTRL-D)
After
foo.c fool foo.rn
% print foo_ bar

complete-word
Command, pathname and variable completion. If the cursor is positioned on the first word
of the command-line, command pathname is performed, else pathname or variable
completion is performed. The word is expanded to the closest matching command,
pathname or variable. Characters are appended up to the point that they would cause more
than one. If a complete pathname results for pathname completion, gsh appends a "1" if
the pathname is a directory; otherwise, it appends a space.

Before After
% ca - (TAB) % cat
% mo - foo.c (TAB) % more - too.c
% more fo - (TAB) % more too_
% echo $TERKC_ (TAB) % echo $TBRMCAP_

Note that if there is more than one match for the partial command, gsh will sound a beep
on the speaker. You can use the CTRL-D (list-choices) command to see the list of
possible matches, and should either finish entering the command manually or type enough
additional characters to guarantee a unique match.

If the SF IGNORE variable is set, gsh ignores filenames (when doing completion) that end
with any of the suffixes in $FIGNORE. See Chapter 5 Description of Pre-defined
Shell Variables for more information regarding the $FIGNORE variable.

Chapter2 Interacting with the GNO Shell

Other ways of entering commands

Tenninal Input

An example involving the connection of a tenninal; will be dealt with in Chapter 3 Redirecting Input
and Output but it is necessary to mention here that when using gsh over a tenninal, some keystrokes
must be slightly modified. This is because there are no tenninals that can transmit the OAkey. Instead, a
two-key sequence must be used which replaces OA with ESC. For example, instead of pressing OA-E to
toggle insert mode, you can type ESC-E over a tenninal to do the same thing.

If you will be using terminals seriously then you should install the Remote Access package.

Script File

While you would normally type commands on the command-line, you can also store a series of often used
commands in a file. A file containing such a series of commands is called a script. A script is normally
created by using a text editor.

By typing the name of the script file, the shell will execute it, line by line, as if you had typed each
command separately. The gshrc file presented in Chapter 1 Customizing the Shell Environment is
an example of a script flle.

1 1

Interacting with the GNO Shell Chapter 2

12

Chapter 3
Using the GNO Shell more productively

"And then one day, hooray! Another way for gnomes to say hooray!"
Syd Barret, The Gnome

What does this command do?

If you are unfamiliar with what a particular command actually does or what arguments it accepts, you can
check quickly by using the electronic manual. GNO/ME includes a utility called man which displays the
manual pages for a command whose name you supply as an argument. The man utility uses another utility
called more to actually display the pages nicely on the screen. While both of these utilities have electronic
manual entries, we have included the printed manual pages in the GNO/ME package to get you started.

Option Arguments

As mentioned in Chapter 2 Executing Commands, arguments are passed to a command to extend its
usefulness. The arguments presented in the last chapter were words, such as foo, bar and foo.c. Standards
exist under unix for programs to accept command-line option arguments. Option arguments (as the name
suggests) are optional. There are two standards, short options and long options. Short options are
characters that represent commands, whereas long options contain the entire option name.

Consider the following output of the CATALOG command from ProDOS:

!DEV
NAME TYPE BLOCKS MODIFIED CREATED END FILE SUBTYPE

FINDER.DATA $C9 1 21-0CT-91 22:38 14-APR-90 18:24 260
FINDER.ROOT $C9 1 22-0CT-91 17:12 6-0CT-91 15:40 82
GENESYS DIR 1 21-0CT-91 23 :J7 25-APR-91 15:46 512
GSBUG DIR 1 21-0CT-91 23:38 19-JUL-90 16:48 512
MERLIN DIR 2 22-0CT-91 2:50 30-APR-91 20:21 1024
LIFE,9UARD $B3 73 4-SEP-87 4:51 25-DEC-89 20:22 36608
ORCA DIR 2 22-0CT-91 17:12 14-SEP-89 18:27 1024
GNO DIR 2 22-0CT-91 17:12 13-AUG-91 16:36 1024
FAST.ANIM DIR 2 21-0CT-91 23:44 11-MAY-91 10:50 1024
MICOL DIR 2 22-0CT-91 3:10 14-JAN-90 2:46 1024
SRC DIR 1 21-0CT-91 23:44 7-AUG-91 20:30 512
NIFTYLIST.V3.3 DIR 2 21-0CT-91 23:44 29-JUL-91 4:04 1024
MCSRC DIR 1 21-0CT-91 23:45 7-AUG-91 20:34 512

BLOCKS FREE:43923 BLOCKS USED:21185 TOTAL BLOCKS:65108

It is impossible to get any variation in the format of this output. While the GNO/ME utility Is serves the
same purpose as the command CATALOG from Applesoft BASIC, it has a wide number of options which
can tailor the output to specific needs. Here is how Is can be used to give similar output to the CATALOG
command:

[1] 2:13am root % 1s -1
:dev
total 45k
drw--rd 0000 dir
drw--rd 0000 dir

512 Oct 21 23:45 1991 MCSrc
1024 Oct 21 23:44 1991 NiftyList.v3.3

1 3

Using the GNO Shell more productively Chapter 3

drw--rd 0000 dir 1024 Oct 21 23:44 1991 fast.anim
drw--rd 0000 dir 512 Oct 21 23:37 1991 genesys
drw--rd 0000 dir 1024 Oct 22 17:29 1991 gno
drw--rd 0000 dir 512 Oct 21 23:38 1991 gsbug
drw--rd 0000 dir 1024 Oct 22 02:50 1991 merlin
drw--rd 0000 dir 1024 Oct 22 03:10 1991 micol
drw--rd 0100 dir 1024 Oct 22 17:28 1991 orca
drw--rd 0000 dir 512 Oct 21 23:44 1991 src

The -1 short option argument tells Is to fonnat the output in long fonnat. Is supports only short options.
If Is did support long options, the above command could be changed to Is +format-long. This is clearly
more descriptive of what function Is will perfonn. For users to new to the UNIX environment, long fonnat
options are more user-friendly. However, advanced UNIX users prefer short options because of their
brevity.

As indicated above, Is has a wide number of options available to fonnat the output. Use the command "Is
-?"to get a short list of these options. It is left as an exercise for the user to discover how these options
affect the output of Is. For a complete description of the Is command and its options use the command
man Is.

As an example of the usage and importance of long options, the following is the result of the +help option
given to the cofT utility. Note the use of both short and long options:

coff [-OPTIONS] filename [segment ..] [loadsegment ..]

OPTIONS
·-v [+version]

-D [+default]
-d [+asm]
-T [+tool]
-x [+hex]
-1 [+label]
-t [+infix]
-p [+postfix]
-m [+merlin]
-o [+orca]
-a [+shorta]
-i [+shorti]
-s [+header]
-n [+noheader)
-f [+nooffset]
-h [+help)
filename
[segment]
[loadsegment)

DESCRIPTION
display coff's version number
disable default options
dump segment body in 65816-format disassembly
interpret Toolbox, GS/OS, ProDOS, ROM calls
dump segment body in hex (can be used with '+asm')
print expressions using labels (default is offsets)
display expressions in infix form
display expressions in postfix form (default)
format of '+asm' to use merlin opcodes (default)
format of '+asm' to use orca/m opcodes
assume 8-bit accumulator for disassembly
assume 8-bit index registers for disassembly
dump segment headers only
do not print segment headers
do not print offset into file
print this information, then quit
name of file to dump
names of segments in file to dump
names of load segments in file to dump

The long options are much more descriptive, and provide a very easy way to remember options of
programs. If an option passed to a shell utility program is not understood by that program, you will
generally receive an error message stating that the option is not understood. If the program is user
friendly, a brief list of supported options will also be displayed.

14

Chapter3 Using the GNO Shell more productively

Entering Multiple commands

It is possible to give multiple commands to the GNO shell for processing. To execute multiple commands,
place a semi-colon, ";",between them. The commands will be executed sequentially in the order they are
entered on the command-line. Take care not to exceed the 1024 character command-line buffer. It is
possible to execute multiple commands at the same time, this feature is discussed in Chapter 3
Background Execution of Commands. .

To run the echo command and the Is command in succession, enter the following on the command line:
% echo Running la ; ls -1

The output of the preceeding command will display the string "Running ls" followed by the output of the
"Is -1" command. This method of running several commands in succession is used often to save typing.

Using Aliases as Shorthand

gsh provides a built-in command, alias, which allows any command you would type on the command
line to be renamed. You are not limited to renaming a single command name. Rather, you could rename an
entire command-line, which could allow you to use the name "backup" to execute the command "backup
+source /system +destination /tape .drive". The alias command is also a very powerful means
of customizing your GNO environment to emulate other computing environments.

To emulate the ORCA environment, the following aliases could be entered into your gshrc file, or a script
called orca. alias that gshrc would run:

alias copy cp
alias cat "ls -1"
alias catalog "ls -1"
alias move mv
alias rename mv
alias delete rm
alias type cat
alias prefix cd
alias create mkdir

If you alias a string containing multiple words, you must enclose the string in quotes, as done for the
catalog alias. gsh interprets the string as one value. If you do not include both the opening and closing
quotes, the alias command will notify you of your error.

You can view any alias' that are set by entering the alias command without any arguments. The setting of
a particular alias can be viewed by entering one argument consisting of the name of the alias to view.

If you wish to remove an alias, use the command unalias with the aliased name as the argument. To
remove the aliases from the orca .alias file given above, you could do the following:

% unalias copy cat catalog move rename delete type prefix create

Unlike the alias command, the unalias command can take multiple arguments. See Chapter 5 Built-in
Commands for further discussion of the alias and unalias commands.

1 5

Using the GNO Shell more productively Chapter 3

Redirecting Input and Output

Most shell utilities write their output to the screen. However, under GNO/ME, like ORCA, it is possible to
redirect that output to a file or a GS/OS device. The output of the Is command above was imported into
this manual by redirecting it to a file. In addition to redirecting the output of a shell utility, it is also
possible to redirect the input of that utility. Consider the following gsh session:

[1 1% echo this is a test
this is a test
[21% echo this is a test > filel
[3]% cat filel
this is a test
[41% cat < filel
this is a test

In the example above, cat takes input from standard input. In command 3 above, cat takes as an argument
the filename filel and writes the contents of that file to standard output. Where no filename argument is
given, cat reads input from standard input and writes the output to standard output

In the case of command 4 above, cat contains no arguments and therefore reads from standard input.
However, gsh interprets the"<" redirection operator and opens the file filel for use as standard input.
Therefore, cat will take its input from filel, even though it thinks it is reading input from standard input.
This input redirection is transparent to the utility, making it work with most shell utilities.

Command 2 above created a new file called file I. If this file had existed prior to the command then it
would have been erased. It is possible to append output to the end of the file by using the ">> 11 redirection
operator. Consider the following gsh session:

[51% echo second line >> filel
[61% cat filel
this is a test
second line

Output that is sent to standard error, can also be redirected. The 11 >& 11 operator redirects standard error to a
file and 11 >>& 11 appends standard error to the end of the file. Below is a summary of the redirection
operators:

Standard Input
<

Standard Output

>
>>

Standard Error

>&
>>&

Redirect Input from file
Redirect Output to file
Redirect Output to EOF

Output can be redirected to a storage device, printer, modem, or any other valid GNO or GS/OS device.
This provides a very powerful means of communicating directly with these devices from within gsh. One
quick and dirty example of redirection allows a background version of gsh to be run on a terminal
connected directly through the modem serial port:

[1)% gsh < ttya > ttya >&: ttya &:

Pipelines

In addition to the redirection operators, there is one additional operator which gives control over how input
and output are handled. The operator is a pipeline, II 1 II. Pipelines allow the standard output of one
command to be used as the standard input to another command. This is almost equivalent to running the

1 6

Chapter 3 Using the GNO Shell more productively

first command with its output redirected to a temporary file, then running the second command with its
input redirected from the temporary file, then removing the temporary file. Pipelines make useful filter
processes where the output of one command can be sent to another command which filters the output to
whatever parameters you give the second command. As an example, you could display all the filenames
with the character "a" in their name:

[1]% echo foo > filel; echo abc >> filel; echo aabc >> filel
[2]% echo GNO >> filel; echo standard >> filel; echo oof >> filel
[3]% cat filel
foo
abc
a abc
GNO
standard
oof
[4]% cat filel I grep 'a'
abc
a abc
standard

Pipelines are useful when you wish to view lines of text in a file that contain a phrase, or if you want to
connect two programs directly, bypassing intermediate files. It is also possible to connect multiple
commands with multiple pipelines.

Pipelines are frequently used for paging output. The coff program mentioned above prints the output of
an OMF disassembly to the screen but does not pause when a key is pressed. In order to pause the
display, the output must be piped through a paging utility. The ORCA shell requires that you wait for the
entire command to complete execution before the pipeline is processed. However, GNO/ME executes both
commands concurrently which allows the coff utility to execute while the paging utility displays the
program output. GNO/ME comes with two page utilities, more and less. Complete desciptions of coff,
more, less can be found in the electronic manual using the man command.

Background Execution of Commands

A major benefit of GNO/ME is multitasking. Multitasking is a means of running multiple applications at
once (not literally but very close). On the Apple IIGS, GNO/ME accomplishes pre-emptive multitasking
by switching among applications that are running in the background. Any GNO/ME utility can be run in
the background. Applications running in the background generally run for the same period of time
(GNO/ME switches between applications 20 times a second).

To background a shell utility, place the"&" character at the end of the command-line. The GNO shell
displays a unique process ID and job number for each backgrounded command.

It is possible to use the background character"&" to separate commands as with the";" character. Each
command with a following " & " is executed in the background.

Up to 32 processes can executed concurrently under the GNO Kernel.

Warning: When you exit the GNO Shell all processes will be terminated including any you may have
running in the background.

Below is a sample session with background tasks:

1 7

Using the GNO Shell more productively Chapter 3

[5] script> ps
ID STATE TT MMID UID TIME COMMAND

1 ready co 1002 0000 0:45 Nu11Process
2 ready co 1007 0000 0:05 gsh

138 running co 1006 0000 0:00 ps
[6) script> cmp1 +P script .c keep• script > outputfi1e &
[1] + 141 Running cmp1 +p script.c keep=script &
[7] script> ps

ID STATE TT MMID UID TIME COMMAND
1 ready co 1002 0000 0:45 Nu11Process
2 ready co 1007 0000 0:05 gsh

141 waiting co 1006 0000 0:00 cmp1 +p script.c keep=script
142 ready co 100B 0000 0:00 5/cc
143 running co 100D 0000 0:00 ps

[8] script> cmp1 +P script. asm keep•scriptl > output2 & ps ; 1s -s
[2] 145 Running cmp1 +p script.asm keep=script1 &

ID STATE TT MMID UID TIME COMMAND
1 ready co 1002 0000 0:45 Nu11Process
2 ready co 1007 0000 0:05 gsh

141 waiting co 1006 0000 0:00 cmp1 +p script.c keep=script
144 ready co 100E 0000 0:07 5/1inker

.145 ready co 100D 0000 0:00 cmp1 +P script.asm keep=script1
146 running co 100F 0000 0:00 ps
147 ready co 1011 0000 0:00 5/asm65816

3 barf 1 outputfile 6 script.asm 1 script.root
1 foobar 19 script 3 script.c 36 script.sym
1 output2 6 script.a 6 script.mac 1 typescript

[9] script> cp script.asm script2 &
[3] 150 Running cp script.asm script2 &

[2] - Done cmp1 +p script.asm keep=script1 &

[1] + Done cmp1 +p script.c keep=script &

[3] - Done cp script.asm script2 &

[10] script> ps
ID STATE TT MMID UID TIME COMMAND

1 ready co 1002 0000 0:45 Null Process
2 ready co 1007 0000 0:05 gsh

151 running co 1006 0000 0:00 ps

The first command line sends the ps command to the shell. ps lists the processes currently being executed
by the GNO kernel. The processes named gsh and NuiiProcess are always present. For a complete
description of the ps command see Chapter 4 Kernel Commands.

When a command is executing in the background, keyboard input is not sent to it. However, output is still
treated in the same way. If the command sends output to the standard output or standard error, the screen
will become cluttered. Try this example:

[1]% 1s -1&
[2]% 1s -1

Both the output of commands #l and #2 will be sent to the screen. After command #1 is entered and you
begin typing command #2, you will see the output of the first "ls -1" command being sent to the screen
while you enter command #2. Utilities which produce output should have their standard output and
standard error redirected to a file when they are executed in the background. See Chapter 3 Redirecting
Input and Output.

1 8

ChapterS Using the GNO Shell more productively

Executing commands in the background hinders the performance of the Apple IIGS. This is not too
noticeable when one or two commands are being executed but performance will degrade more noticably as
more commands are started. The Apple IIGS was not designed as a multitasking computer so the
performance of GNO/ME should be understandable. If you have an accelerator (such as the Transwarp GS
or Zip GS) installed, performance of multiple tasks will be acceptable.

Job Control

Now that command backgrounding and multitasking have been discussed, some more definitions can be
mentioned. A process is a command which has been submitted to the shell for execution. Gsh contains a
set of special commands which make dealing with processes much easier. gsh treats each command
entered at the command-line as a job, where a single job may contain multiple processes. For example:

% ls
% ls ; ps
% ls & ps
% ls I more

{one command, one process, one job}
{two commands, two processes, two jobs}
{two commands, two processes, two jobs}

{two processes, one job)

When a job is run from the shell, it can be in several modes of operation. Jobs can be in any of three
states: running, stopped, or done. A job can be executing in either the foreground or the background.

Commands exist to place a job in any mode of operation. When a job is run directly from a command-line
it is running and it is in the foreground. Since the command-line cannot be accessed, two special keys have
been defined: AC kills the job and AZ will stop the job. When the job is killed, it is gone forever, but a
stopped job c.an be restarted. When a job is stopped, the kernel suspends each of the processes in the job.

Jobs that are running in the background or have been stopped can be accessed using several built-in
commands. The bg command will place a job in the background, placing it in the running state if
necessary. The fg command will similarly place a job in the foreground, and the stop command will stop
a backgrounded job. The kill command will terminate a job.

Each time job control is accessed, a special job status line is displayed following the command. The first
item on the left in brackets is the job number. Next is a single character, either a'+','-', or a blank. The
'+'designates the currently accessed job, the'-' is the previously accessed job, and all other jobs are not
specified. The jobs command will display a list of all jobs.

This example was used in Chapter 3 Background Execution of Commands, but now more of the
notation will be understandable

[5] script> ps
ID STATE TT MMID UID TIME COMMAND
1 ready co 1002 0000 0:45 NullProcess
2 ready co 1007 0000 0:05 gsh

138 running co 1006 0000 0:00 ps
[6] script> cmpl +P script.c keep=script > outputfile &

[1] + 141 Running cmpl +p script.c keep=script &
[7] script> ps

ID STATE TT MMID UID TIME COMMAND
1 ready co 1002 0000 0:45 NullProcess
2 ready co 1007 0000 0:05 gsh

141 waiting co 1006 0000 0:00 cmpl +P script.c keep=script
142 ready co 100B 0000 0:00 5/cc
143 running co 100D 0000 0:00 ps

[8] script> cmpl +P script.asm keep•scriptl > output2 & ps ; ls -s
[2] 145 Running cmpl +p script.asm keep=script1 &

1 9

Using the GNO Shell more productively

ID STATE
1 ready
2 ready

141 waiting
144 ready

.145 ready
146 running
147 ready

3 barf
1 foobar
1 output2

[9] script>
[3) 150

[2) - Done

[1) + Done

[3) - Done

[10) script>
ID STATE

1 ready
2 ready

151 running

TT MMID UID TIME COMMAND
co 1002 0000 0:45 NullProcess
co 1007 0000 0:05 gsh
co 1006 0000 0:00 cmpl +p script.c keep=script
co 100E 0000 0:07 5/linker
co 100D 0000 0:00 cmpl +P script.asm keep=script1
co 100F 0000 0:00 ps
co 1011 0000 0:00 5/asm65816

1 outputfile 6 script.asm
19 script 3 script.c

6 script.a 6 script.mac
cp script .asm script2 &

Running cp script.asm script2 &

cmpl +p script.asm keep=script1 &

cmpl +p script.c keep=script &

cp script.asm script2 &

ps
TT MMID UID TIME COMMAND
co 1002 0000 0:45 Null Process
co 1007 0000 0:05 gsh
co 1006 0000 0:00 ps

1 script.root
36 script.sym

1 typescript

Chapter 3

Each of the special commands, bg, fg, stop and kill, take an argument which specifies the job to perform
the operation on. The argument is either a number specifying the process id, or a '%' followed by one of
the following:'+' or'%' for the current job, a'-' for the previous job, or a number to specify any specific
job. If nothing follows the '%'or the argument is missing, then the current job is the default.

20

[1] gno> cat gshrc

GNO 2.0 gshrc file

Initialize our environment

set path=":right:gno:bin :right:gno:usr:bin"
set prompt=" [%h) %S%t%s %C> "
set home=":right:gno:user:root"
set term=gnocon
export path prompt home term
setenv history=100 savehist=25

#Set up standard prefixes for utilities.

prefix 2 :software:orca:libraries
prefix 3 :software:orca
prefix 4 :software:orca:shell
prefix 5 :software:orAZ
[1) + Stopped (signal) cat gshrc
[2) gno> jobs

ChapterS Using the GNO Shell more productively

cat gshrc [1] + Running
[3] gno> bg
[1] + Running
ca:1anguages

{output was not redirected, so screen gets cluttered}
cat gshrc

prefix 6 :software:orca:uti1ities
prefix 7 :tmp

Set up prefixes for Orca2.0(tm) 's benefit

prefix 13 :software:orca:libraries
prefix 14 :software:orca
prefix 15 :software:or
[4] gno> stop
[1] + Stopped (signal) cat gshrc
[5] gno> jobs
[1] + Running cat gshrc
[6] gno> fg
[1] + Running cat gshrc
ca:shell
prefix 16 :software:orca:languages
prefix 17 :software:orca:utilities
alias ls 'ls -CF'
alias dir 'ls -al'
alias cp 'cp -i'
alias rm 'cp -p rm'
alias mv 'cp -p mv'
setenv usr"Z
[1] + Stopped (signal) cat gshrc
[7] gno> jobs
[1] + Running cat gshrc
[8] gno> kill %1
[9] gno> jobs.
[10] gno>

{Incredibly fast typing :-) }

There is one additional way that a job may be stopped. If the job is placed in the background and it
attempts to read from the console, the job will be stopped, and the status line says II (tty input) II as the
reason for the job being stopped. The job should be foregrounded so that the user may enter input to the
program. It can then be placed back in the background as necessary (with "'Z and bg).

Working with Pathnames

To move easily to directories descended from the home directory, gsh provides the II- II (tilde) character.
This character represents the home directory. Therefore, if your home directory was
II :hard: gno: user: root II, you could use the command II cd -II to move to the home directory (note that
cd without any arguments also defaults to the home directory). To move to subdirectories of the home
directory, you could use the command 11 cd -/dirl 11 command. The tilde character is recognized by gsh
before the command is interpreted.

Another special sequence " .. ", when used as part of a pathname, will strip the last path between
pathname seperators. For example, the pathname "/dev/gno/ .. 11 would be expanded to 11 /dev11

• The" /gno 11

path is stripped as it is before the periods. This provides an excellent way to backup into your directories.
"Backing up" is limited by the volume directory of the device being used.

Additionally, the character ".",can be used to signify the current directory.

21

Using the GNO Shell more productively Chapter 3

Examples:

[/dev/gno]% cd -
[/dev/gno]% cd -/arc
[/dev/gno/src]% cp -/filel file2
[/dev/gno/src]% echo -/ ••
/dev/gno/ ..
[/dev/gno/src]% cd -/ •.
[/dev]% mkdir -/utilities
[/dev]% mkdir ./libraries
[/dev]% cd-
[/dev/gno]% cp src/filal .

{ change to home directory }

{ copy /dev/gno/filel to /dev/gno/src/file2 }

{ create directory /dev/gno/utilities }
{ create directory /devllibraries }

{ copy /dev/gno/src/filel to /dev/gno/filel }

Pathname Expansion

Many utilities supplied with gsh take, as an argument, a filename or filenames. The shell utilities cat, Is,
grep, and cp can take multiple filenames as arguments. If you wish to invoke any of these utilities on
filenames that have a sequence of characters in common (ie. AND, APPLE, SHK, TXT, FILE2, FILE3, etc.),
gsh provides special characters, called regular expressions or wildcards, which match multiple filenames
without having to enter all filename arguments manually.

*
?
[abc]
[Aabc]
[a-c]

Matches any string of characters.
Matches a single character.
Matches any of the characters enclosed in brackets.
Matches any of the characters not enclosed in brackets.
Matches the ascending sequence of characters enclosed in brackets.

This method of matching filenames is known as glob bing. gsh performs glob bing on the word prior to
executing the command. The following gsh session illustrates file globbing:

22

[1]% cd /dev/gno/utilitiea
[2]% ls
:dev:gno:utilities
CONV Crunch
DumpObj Duplicate
Files LinkiiGS
Prizm
clrff
de tab

Res Equal
cmdfix
dir

emacs.doc emacs.hlp
init join
mem online
src
[3]% la e*
:dev:gno:utilities
EMACS Equal

CrunchiiGS
EMACS
Make Bin
Search
coff
dirff
emacs.rc
link
pageeject

Express
emacs.hlp emacs.rc emacs.tut
[4)% echo *r *m
dir Prizm mem
[5 l % echo * i *

DeRez DiskCheck
Equal Express
MakeDirect OrcaDumpiiGS
canon choose
compact count
dump file eject
emacs.tut help
macgen make lib
pause pwd

eject emacs.doc

cmdfix CrunchiiGS Prizm DiskCheck Duplicate Files init join LinkiiGS makelib
MakeBin MakeDirect link dirff dumpfile online OrcaDumpiiGS dir
[6)% echo NoMatch*
No match.
[7)% echo [a-f]*

Chapter3 Using the GNO Shell more productively

coff canon cmdfix compact Crunch CrunchiiGS DeRez DiskCheck DumpObj Duplicate
EMACS emacs.doc emacs.hlp emacs.rc emacs.tut Equal Express Files choose clrff
count detab CONV dirff dumpfile eject dir
[8]% echo [a-fa-t]*
coff canon cmdfix compact Crunch CrunchiiGS DeRez DiskCheck DumpObj Duplicate
EMACS emacs.doc emacs;hlp emacs.rc emacs.tut Equal Express Files choose clrff
count detab Search src CONV dirff durnpfile eject dir
[9]% echo emacs?*
EMACS emacs.doc emacs.hlp emacs.rc emacs.tut
[10]% echo ["a-f)*
Prizm help init join LinkiiGS makelib MakeBin MakeDirect link mem ResEqual
Search src online pageeject pause OrcaDumpiiGS pwd macgen
[11]% echo ["a-fs-t]*
Prizm help init join LinkiiGS makelib MakeBin MakeDirect link mem ResEqual
online pageeject pause OrcaDurnpiiGS pwd macgen
[12]% echo ???
mem src pwd dir
[13]% echo ?
No match.
[14]% echo "???"
???
[15]% do you have a light?
No match.

As can be seen by the above example, character matches are case insensitive. The ProDOS file system
treats the filenames "file" and "FILE" as the same file. gsh recognizes this and does not detract from the
underlying file system.

File globbing makes passing arguments to commands much easier and much more powerful. You could
easily use "* . c" as an argument in a number of ways:

[1]% ls *.C

[2]% cc *.C

[3] % more * . c

Quoting Special Characters

{ lists all filenames ending in II .C" }

{ compiles all files ending in II .C" }

{ displays contents of all files ending in II .C" }

Beginning with Apple IIGS System Software 6.0, GS/OS is able to read files from Macintosh computers.
The Macintosh uses a filesystem known as HFS, which allows filenames to contain any character except

·the colon (": "). Because a filename such as "emacs?*" is valid under HFS, care must be taken or
unexpected results will occur. The word "emacs?*" was used as a regular expression above to specify a
list of filenames beginning with the word "emacs" and one or more trailing characters. gsh does provide a
way to pass an argument which contains special shell characters to a command. This is known as quoting
an argument. There are three different ways to quote an expression:

The single quote will quote everything between the single quote marks. Thus, to display the contents of a
file on an HFS volume named "emacs?*":

% more 'emacs?*'

The double quote will quote everything between the double quote marks except variables. See Chapter 5
for more on variables.

23

Using the GNO Shell more productively

% echo •emacs?* $home•
emacs?* /dev/gno

Chapter 3

The backslash is used to quote one character. To pass "emacs?*" as a regular expression using the
backslash, enter the following:

% ls emacs\?*

One additional purpose of the quoting mechanism built into gsh is to add spaces to command arguments.
Each command and its arguments is separated by a space. Multiple spaces between arguments are treated
as one space. Thus, consider the following:

% echo a
a b c
% echo 'a
a b c

b c

b c'

How gsh Finds a Command

· gsh has a special variable, PATH, which specifies the directories and order of directories to search for shell
utilities. This variable is often setup in the gshrc file although it can be changed as often as needed. The
purpose of the PATH variable was discussed in Chapter 1 Customizing the Shell Environment.

When gsh starts up, it searches all directories specified in the PATH variable and establishes a table of all
commands, ~ailed a hash table. Because of this table, gsh "knows" where a command is and can execute
the command much faster than searching through all directories every time the command is entered.

The search process begins with alias names. See Chapter 3 Using aliases as shorthand. If an alias is
found that matches the command, the alias is replaced with its value and the command-line is again parsed.
If it was not an alias, gsh checks to see if it was a special built-in utility. The search process then searches
for the name in the hash table. If an entry is found in the hash table, the path name of the command is
retrieved and the command is executed. If an entry is not found, the current path is searched. If the
command name is not found, an error results.

When the PATH variable is changed, gsh does not automatically recreate the command hash table. You
need to issue the command rehash to recreate the hash table. The more pathnames specified, the greater
the delay in starting gsh and in invoking the rehash command. The following shell script changes PATH
and invokes the rehash command in one step.

echo Resetting PATH variable $PATH to $1
set path=$1
rehash

The $1 variable will be expanded with the first argument passed to the script.

rehash should also be used if a new utility is copied to one of the directories specified in the PATH
variable. Of course, it is possible to specify the absolute pathname of any command, but this is undesirable
if the command is frequently used.

24

Chapter 4
Built-in Commands·

Built-ins vs EXE Commands

The term "built-ins" is used to describe commands that exist within the shell itself. These utilities run faster
than external commands because the code is already loaded into memory. Files of type "EXE", on the
other hand, must be loaded into memory by gsh and executed. If an EXE command is executed again, it
might, again, have to be loaded into memory. This results in longer execution time for the program.

gsh has a number of built-in commands which allow you to work with the shell, the GNO kernel, and the
shell environment

The following section describes the commands that are built-in to gsh. The "[..]" character sequence
represents an optional argument to a command. The term "SIGNAL" is used to represent one of the signal

·names or numbers listed in Appendix D Signals. The sequence " ... " means the command accepts
multiple arguments of the same type as the argument before the " ... " sequence. The sequence " { .. } " is
used to represent a set, which is a list of possible arguments to choose from.

Shell Commands

Shell built-ins provide support for external shell commands (i.e. EXE files and shell scripts) and provide
some commands used in every-day work.

bindkay [-1) function string
Bindkey is used to customize the shell's command-line editor. Any key on the keyboard can be mapped to
any of a number of functions. The various functions are as follows:

backward-char move cursor left
backward-delete-char delete character to left
backward-word move cursor left one word
beginning-of-line move cursor to beginning of line
clear-screen clear screen and redraw prompt
complete-word perform filename completion
delete-char delete character under cursor
down-history replace command line with next history
end-of -1 ine move cursor to end of line
forward-char move cursor to the right
forward-word move cursor one word to the right
kill-end-of-line delete line from cursor to end of line
ki 11-whole-1 ine delete the entire command line
list-choices list file completion matches
newline finished editing, accept command line
raw-char character as-is
redisplay redisplay the command line
toggle-cursor toggle between insert and overwrite cursor
undefined-char this key does nothing
up-history replace command line with previous history

25

Built-in Commands Chapter 4

Keys are bound to functions, not vice-versa. This means that you can have any number of commands
refer to the same function. For example, the default bindings have CTRL-A and OA-< both bound to
beginning-of-line.

Most of the function names are self-explanntory, and are explained in Chapter 2, but a few deserve
discussion. raw-char is what you should bir. a key that should be inserted into the command-line as-is.
The regular printable ASCII set, such as the k:ters a-z, numbers, etc. are bound to raw-char. Control
characters should not be bound to raw-char because the command-line editor will become confused (most
control characters act as special GNO/ME console feature codes - see the GNO Kernel Reference Manual,
Chapter 4 TextTools Replacement).

Any keystroke that should be rejected by the editor should be bound to undefined-char. By default, this
includes control characters and OA-sequences that are not assigned to any editing features. Any key
bound to undefined-char will cause gsh to beep and ignore the key.

You can actually bind key sequences, not just keystrokes, to functions. There is no limit other than
memory to how many characters are in a command sequence.

Because terminals do not have the OA (Open Apple) key, OA is actually mapped by the kernel to a two
character sequence consisting of Esc and the key. For example, OA-Y would actually produce Esc-Y.

Control characters in the string are represented in AX format; e.g. CTRL-A is represented by AA. ESC
(and OA) is represented by A(.

Examples:
% bindkey kill-end-of-line AK
% bindkey clear-screen A[AX

commands
Displays a list of all built-in shell commands.

cd [pathname]
chdir [pathname]

map CTRL-K to kill-end-of-line (like Emacs)
map OA-CLEAR to clear-screen

Changes the current working directory to pathname. If pathname is not given, the default HOME directory
(i.e. the value of the HOME environment variable) is used. This makes it easy to move back to your home
directory. Under gsh, unlike most UNIX shells, the cd is not necessary, except to change automatically to
your HOME directory. If a command is not a built-in or EXE file, but is instead the name of a directory, a
cd is implied and performed on the directory unless the NODIREXEC variable has been set.

clear

[1) gno> cd utilities
[2) gno/utilities> echo $HOME
/dev/gno
[3) gno/utilities> cd
[4) gno> utilities
[5) gno/utilities> .. /utilities
[6] gno/utilities> -
[7) gno> _

This command takes no arguments. When invoked, the screen will be cleared.

df
This command takes no arguments. When invoked, a listing of free blocks for every block device is given.
In addition, the device name, type, file system, and capacity is listed.

26

Chapter 4

[1] gno> df

.d## Volume

.d1 :Procyon

.d2 Apple 3. 5 Drive

.d3 Apple 3.5 Drive

.d4 Console Driver

.d5 :Day

.d6 :Night

.d7 :Left

.dB :Right

.d9 :Software

.d10 :RAM5

.dll :Conner 40

.d12 AppleTalk fsd

.d24 AppleTalk fsd

.d25 AppleTalk RPM

.d26 AppleTalk Main

.d27 Serial Modem

.d28 :system

.d29 :dev

.d30 :usr

volume- Name of device.
Device- GS/OS device name.

Device

.CVTECH.S6.A
.APPLEDISK3.5A
.APPLEDISK3.5B
.CONSOLE
.CVTECH.S6.B
. CVTECH. S6 .C
.CVTECH.S6.D
.CVTECH.S6.E
.CVTECH.S6.F
.RAMDISK
.AFP1
.AFP2

.AFP14

.RPM

.APPLETALK

.SERIAL2

.APPLESCSI.HD01.

.APPLESCSI.HD01.

.APPLESCSI.HD01.

Free - Total number of free blocks on device.
Total -Total number of blocks on device.
capacity - Percentage of used blocks on device.

Built-in Commands

Free Total Capacity System
------- ------- -------- -----------

3166 41037 92% ProDOS

15881 65535 75% ProDOS
39274 65535 40% HFS

5365 51776 89% ProDOS
27477 65535 58% Pro DOS

3289 40960 91% ProDOS
505 512 1% ProDOS

7368 80604 90% AppleShare

27561 50773 45% ProDOS
43431 65108 33% ProDOS
44376 48725 8% ProDOS

System- Format of file system. With System Software 6.0.1, the file systems available are ProDOS,
HFS, Pascal, MS-DOS, and DOS 3.3, and some CD-ROM formats.

echo [-n] arg [arg ...]
Expands the "arg" expression(s) and outputs them to the screen. If the "-n" switch is specified, a
NEWLINE character is not output after the last "arg" expression. Special escape sequences may also be
included in the arguments, similar to those used in C strings:

exit

\J::i- Backspace
\ f- Clears screen (form feed)
\n- Newline
\r- Return
\t- Tab
\nnn- A decimal ASCII code. nnn represents the ASCII code.

[1] gno> echo Hello World
Hello World
[2] gno> echo -n Hello World
Hello World [3] gno> echo $PATH $HOME 1 come get to $gnome 1

/dev/gno/utilities /dev/orca/utilities /dev/gno come get to $gnome

Exits the shell or terminates a shell script.

history
This command displays the list of previous command-line entries. The number of entries saved is set in
the $HISTORY variable.

27

Built-in Commands

pushd
popd [+n]
dirs

Chapter 4

These three commands maintain the shell's directory stack. Let's say you're working in a directory
/src/myprogs/class/program.l/, and you want to temporarily go to another directory. Instead of having to
'cd' there and 'cd' back to a very long directory name (i.e., lots of typing), you can use the pushd
command, like so:

gsh> pushd /etc

gsh> popd

{ start in /src/myprogslclasslprogram.l/ }

{ back in /src/myprogslclass/program.ll }

The pushd command stores the current directory on a stack, and then changes the current directory to the
argument. When you want to go back to the original directory, type popd. The shell will pull the last
directory off the stack and 'cd' to that directory.

The popd command when given an argument of +n will remove the n'th directory from the stack. It does
not change to that directory.

The dirs command displays the current directory stack.

pwd
Displays the current working directory. This is useful if you have not configured the $PROMPT string to
output your current working directory.

[1] > cd $HOME
[2] > pwd
/user/root
[3] > cd utilities
[4] > pwd
/user/root/utilities

source
When a script is executed, gsh creates a new process to run the script. As a result, scripts cannot change
the shell's prefixes and certain other parameters. Instead of executing the script directly, you may use the
source command which does not create a new process to execute the script. Thus, the source command
is effectively exactly like typing all the commands in the script from the keyboard.

tset
The tset command causes the shell to reread the /etc/termcap file and reset its output system to use the
terminal type specified in the $TERM variable. On startup, after reading the gshrc file, gsh automatically
does a tset. gsh also automatically does a tset whenever the $TERM variable is changed with the set
command. You would use tset manually if, for example, a utility changed the value of $TERM.

which command_name [command_name .••]
Let's say that you are working on a new version of the venerable shell utility ls. Since a search of the
hash table is done before searching the current directory, you might accidentally be using the wrong
version of the command. You make changes and run the new program, but your changes don't seem to
appear! Use the which command to check your sanity. Which also comes in handy in locating duplicate
program names in the $PATH directories (for example, an ls in both /bin and /usr /bin.)

The way to access a utility in the current directory which has the same name as a program in the $PATH is
to prefix the command name with'.', as in". !ls". Also, see unhash.

28

Chapter4 Built-in Commands

Kernel Commands

gsh provides a set of commands to control the GNO kernel. These commands mainly deal with job
control. See Chapter 3 Job Control.

bg (%job I pid }
Starts the specified job, if stopped, and places it in the background.

fg (%job I pid }
Starts the specified job, if stopped, and brings it into the foreground.

jobs [-1]

Displays a list of the shell's jobs. If the II -1 II switch is specified, the process id is included in the job list.

[1] gno> cmpl foo.c keep=foo &

[1] + Running cmpl foo.c keep=foo &
[2] gno> echo hello
hello
[3] gno> jobs
[1] + Running cmpl foo.c keep=foo &

kill ([-SIGNAL] %job I pid I [-1]
The kill command will send the signal SIGNAL to the process number pid. The ps command documented
below describes how to list all process ID's currently executing.

SIGNAL can be either a numeric value or string representing the signal to be sent to the process. All signals
are documented in Appendix D Signals, with numeric and string value listed. Alternatively, specifying
the -1 option will list all the signals and their names.

If the process number isn't known, but the job number is, replace the pid with a '%' followed by the job
number.

ps
This command takes no arguments. When invoked, a list of all currently running processes is displayed.

[2) 9:52pm root> ls -lR :hard:gno > /ramS/dev &

[1) + 35 Running ls -lR :hard:gno &
[3) 9:53pm root> ps

ID STATE TT MMID UID
1 ready co 1002 0000
2 ready co 1005 0000

35 ready co 100A 0000
36 running co 1007 0000

[4) 9:53pm root>

TIME COMMAND
0:26 NullProcess
0:02 gsh
0:01 ls -lR :hard:gno
0:00 ps

[1) + Done ls -lR :hard:gno

ID-A unique process ID assigned to a command by GNO. Use this number to reference any process.
STATE - Current state of the process. Each process can be in any of the following states:

the process is currently in execution. RUNNING
READY the process is not currently executing, but is ready to be executed as soon as

it is assigned a time slice.
BLOCKED

NEW

the process is waiting for a slow I/0 operation to complete (for instance, a
read from a TTY).
the process has been created, but has not executed yet.

29

Built-in Commands Chapter 4

SUSPENDED the process was stopped with SIGSTOP,SIGTSTP,SIGTTIN, or
SIGTTOU.

WAITING

WAITSIGCH
PAUSED

the process is waiting on a semaphore 'signal' operation. Programs waiting
for data from a pipe have this state.
the process is waiting to receive a SIGCHLD signal.
the process is waiting for any signal.

TTY- Terminal connected to process.
MMID - Memory Manager ID assigned to process.
UID - ID of the user who initiated the process.
TIME - How much CPU time this process has used. This is not the elapsed time of the process.
coMMAND- Command-line string used to invoke process.

setdebug (val I { + 1-} flag }
Turns GNO kernel debugging code on or off. The value passed consists of a bit field, where each bit
specifies a different type of debugging code to activate. An alternate method is to provide a list of debug
flags, either preceded by a'+' or a'-'. Those preceded by a'+' are activated, and those preceeded with a
'-' are deactivated. All debugging is deactivated by passing a value of 0. Running setdebug wtth no
arguments returns a list of the debugging flags. Legal flags include:

gsostrace -Trace GS/OS calls
gsosblocks - Trace GS/OS parameter blocks
gsoserrors - Trace GS/OS errors
pathtrace -Trace GS/OS pathnames
sigtrace -Trace signals
systrace -Trace system calls

stop { %job I pid }
Stops the execution of all processes in a specified job.

Environment Commands

The last set of commands, environment commands, modify the gsh environment. Many of these
commands have been used in other parts of this manual and, therefore, should not be new.

alias [name] [value]
Creates an alias for a string. When this alias is referenced as a command, value will be expanded into the
command line. For commands that require many arguments or have several steps, you could set up an
alias to save typing. You can also use aliases to create new names for commands. To obtain a list of all
aliases, invoke alias with no arguments. To list the value of an alias, invoke alias with name only .

. Here are some alias examples:

30

Alias
11 or list_long
backup_sys
backup_home
print
catalog
delete
copy
type
rename

Command Name
ls -1
cp -r /system /BackupDrive&
cp -r $HOME /BackupDrive&
echo
ls -1
rm
cp
more
mv

Chapter4 Built-in Commands

export [variable •.•]
When a shell environment variable is marked as exportable, any process that is created from within the
current process (most likely gsh), will be passed copies of the exported variables. See setenv and
Chapter 5 Scope of shell variables.

hash
Displays a list of all commands currently in the shell's hash table; i.e., a list of commands in the various
$PATH directories.

prefix [prefixnum [prefixname]]
GNO maintains a list of 32 'prefixes' for each process. Prefixes allow the user to reference a directory
with a number. While gsh provides this ability with environment variables, the prefix command exists to
support the ORCA compilers and other utilities that are dependent on certain GS/OS prefixes. Appendix B
contains a list of these prefixes and their "default" meanings, as documented in the "Apple IIGS GS/OS
Reference", Volume 1.

If pre f ixname is not given, the value of pre f ixnurn is displayed. If neither argument is given, a list of
currently assigned prefixes is displayed.

rehash
To decrease the time spent searching for a command, gsh builds a table of all commands which were
found in the pathnames set in the $PATH variable. When a command is invoked, only this list is searched.
When the $PATH variable is changed, gsh must rebuild this list. The rehash command tells gsh to
rebuild the list

While the old list is still active, if $PATH is changed and one of the previous search paths is no longer
online, gsh will try and execute the command from the offline device, resulting in a command failure.

To make this a one-step process, the change. path shell script listed in Chapter 5, Accessing shell
variables can be used.

set [var] [value] · [{var value} ...]
set var=value [var=value ...]
setenv [var value] ...
Use these command to create or modify environment variables. If set is invoked with no arguments, a list
of the current environment variables is displayed. If only var is given as an argument, the value of var is
displayed. To set or reset a variable, use both the var and value arguments. There are two ways to set a
variable, either by "var value" or "var=value". To set multiple variables at once, simply list them all on
the command line as shown above.

setenv works just like set, but automatically exports the variable(s) or lists only exported variables.

When using set or setenv to view a list of variables, exported variables appear in ALL CAPS.

unalias name [name ...]
To remove an alias from the alias list, use this command. To remove multiple aliases with one command,
specify all the aliases on the command line.

unhash
To disable the internal hash table created with the rehash command, use this command. This is useful if
you wish to use only utilities in the current working directory (during testing, for example).

3 1

Built-in Commands Chapter 4

unset var [var •••)
To remove a variable from the environment, use unset. unset accepts multiple names if more than one
variable is to be deleted. Future attempts to access the variable var will result in an error or a NULL
string, depending on the circumstances.

[8] 9:57pm root> set
PAGER = less
PATH = :hard:gno:bin :right:gno:usr:bin
userl = foo
USRMAN = /usr/man
HISTORY = 30
status = 227
fignore = .a .root .sym
TERM = gnocon
LESS = -e
PROMPT = [%h) %S%t%s %C>
HOME = :hard:gno:user:root
user = user1
nonewline = 1
[9) 9:57pm root> unset userl
[10) 9:57pm root> unset user
[11] 9:57pm root> set
PAGER = less
PATH = :hard:gno:bin :right:gno:usr:bin
USRMAN = /usr/man
HISTORY = 30
status = 0
fignore = .a .root .sym
TERM = gnocon
LESS = -e
PROMPT = [%h] %S%t%s %C>
HOME = :hard:gno:user:root
nonewline = 1

32

Chapter 5
Shell Variables

And then one day, hurray! Another way for gnomes to say hooray!
Syd Barret, The Gnome

Using shell variables

gsh supports variables in the shell environment. These variables can be used by any shell utility or
script. Many EXE files and shell scripts pre-define certain shell variables that contain fonnatting options or
other options for a specific utility. As an example, the Is utility looks for the variable TERM that defines the
tenninal type currently being used. When Is is started, it reads the value of the TERM variable and avoids
printing Apple II specific Mouse Text characters if the set tenninal does not support them.

gsh has set aside certain variables for its specific use. Shell utilities should be aware of these variables and
use them appropriately. Use caution when changing shell variables, because the change could affect more
than just the shell.

Scope of Shell Variables

There are two types of processes that are involved in any discussion of a multitasking system. The original
process, gsh for example, is called a parent process. If gsh invokes a process, such as Is, cp, or mv,
that process is called a child process. It is possible for any process to define a variable. These variables
will not be made available to other processes unless the program that defined the variable specifically
makes them available.

The export command makes variables defined by one process available to its children. See the example
gshrc shell script shown in Chaper 1 Customizing the Shell Environment. In the case of the shell,
most of its variables are exported and, therefore, all shell utilities can read the value of a shell variable.
However, programs cannot change the value of a shell variable. In general, executables share their
environment with that of the shell, so that a utility can change variables in its parent's environment. This
allows communication between programs and the shell.

Description of Pre-defined Shell Variables

The following variables have special meaning to gsh. Shell variables are not case sensitive.

$0, $1, $2,

$<

String values that contain the arguments to a shell script. Variable 0 contains the name of
the script. The first argument begins with variable 1 and so on. To expand a variable, use
the dollar character, "$" (See Chapter 5 Accessing shell variables)

When encountered, the variable is expanded using a value obtained from standard input.
This provides a means of obtaining user input in script files. Note that the shell variables
are expanded before the command-line is executed (See Chapter 5 Accessing shell
variables) When prompting the user for input, be sure that the prompt is in a separate
command-line than the$<. Also, if the user wishes to enter a value with spaces, he must
quote what he types with double-quotes.

33

Shell Variables Chapter 5

$ECHO

$FIGNORE

$HISTORY

$HOME

A boolean value that, if defined, will cause commands in a shell script to be echoed to
standard output

This variable, if set, contains a list of fllename suffixes. When doing command or fllename
completion, gsh will ignore any filename with a suffix listed in FIGNORE. For example,
you might want to set fignore=" .A .ROOT .SYM" to ignore object files and other
compiler droppings.

A numeric value that contains the number of history commands (command-lines)
remembered. If the value is 0 or HISTORY is undefmed, all commands will be remembered.
Previous command-lines can be called back with the UP-ARROW and DOWN-ARROW
(See Chapter 2, History Editing Commands).

The HOME directory is the main directory of the shell; it is the directory gsh defaults to
when it starts. The tilde character (11

-
11

) can be used as a shorthand method of accessing the
HOME directory (as discussed in Chapter 3, Tilde Expansion).

$ IGNOREEOF A boolean value that, if enabled, will prevent "D from exiting the shell.

$NOBEEP A boolean value that, if set, will prevent gsh from sounding the speaker when errors occur
while editing a command-line.

$NODIREXEC A boolean value that, if set, will disable gsh's feature of treating directory names as
commands; i.e. if a directory is specified as a command, gsh will move to that directory as
though the cd command was being used.

$NOGLOB A boolean value that, if enabled, will disable filename globbing. Command arguments will
be passed to their commands II as-is II, without any wildcard expansion.

$NONEWLINE A boolean value that, if set, will disable carriage returns being output before and after
command execution. Previous examples given in this manual have this option set

$PATH

$PRECMD

$PROMPT

34

A string value that defines the pathnames where shell scripts, EXE utilities, and SYS 16
programs can be found (See Chapter 3, How gsh finds a command). Because
GS/OS uses colons as separators in pathnames, gsh cannot allow colons to be used as
separators in the PATH variable, as UNIX does. If one of the path entries has a space
within it (which is possible with the HFS FST), then the space should be quoted with a
backs lash, II\ II.

Actually an ~ and not a variable, if PRECMD is defined it will be executed just before gsh
prints the prompt for a command line. For example, alias precrnd qtirne will print the
time in English text before every prompt

When gsh prompts you to enter a command, the prompt that appears before the cursor can
be customized for your gsh environment. If PROMPT is undefined, the default prompt of
"% II is used. The prompt string recognizes certain character sequences in the PROMPT
variable and interprets them accordingly. The following are the special characters:
%hi %! I ! Current history number.
%t I %@ Current time of day in 12 hour am/pm format.
%d, %1 Current working directory.
%- Current working directory with tilde("-") replacement.
%c, %C, %. Trailing component of current working directory.
%S, %s Inverse mode ON (%s) I OFF (%s).

Chapter 5

%U, %u

%%
%n
%W
%D
\n
\r
\t
\b

Shell Variables

Begin and end Underline mode (only on terminals that support
underline. gnocon will use inverse mode instead.)
Displays a single"%" character.
User name (contents of $USER variable).
The date in mm/ddlyy format.
The date in yy-mm-dd format.
Newline
Carriage Return
Tab
Bell (beep)

Examples of prompts already used in this manual are" [1] %",and" [/user /root]%"
These were created by using the commands set prompt "[%h]%" and set prompt
"[%d]%".

$PUSHDSILENT
If this variable is defined, gsh will not print the directory stack after any of the directory
stack commands (See Chapter 4 pushd, popd, .)

$SAVEHIST A numeric value that contains the number of commands to save to disk when exiting gsh.
These commands are then read back in when gsh is restarted which allows old commands
to be reused. If the value is 0 or SAVEHIST is undefined, no commands will be saved to
disk.

$TERM This variable contains the name of the terminal emulation that the shell and other
applications should use. By default, it is 'gnocon'. When the shell encounters a 'set
term' command, it automatically calls the tset command to reload the termcap
information. See Appendix F Termcaps.

$TERHCAP This variable specifies the location of the termcap file. The shell and other applications
look for termcap in the /etc directory, but if TERMCAP is set, the fully specified termcap file
is used instead. This allows users to install custom termcap entries. See Appendix F
Termcaps.

$USER A string that represents the name of the current user. This variable is usually set by
login (I).

Accessing shell variables

Shell variables are defined or changed with the set command. The unset command is used to delete a
variable. See Chapter 4 Environment Commands for more information on the set and unset
commands

To access shell variables from the command line or a shell script, use the character"$" followed by the
variable name. The dollar sign character will expand the variable to its value. If you wish to use the dollar
sign character in a string from the command line, remember to enclose it in single quotes or use the "\"
escape character. If you use double quotes, the shell will try to expand the variable. To differentiate the
variable name from characters that may immediately follow it, the variable name may be optionally
surrounded with braces, II {II and II} II. This provides a very powerful way of user interaction with shell
scripts. As an example,

35

Shell Variables Chapter 5

36

(1] 9:41pm root> aat
PAGER = less
SAVEHIST = 25
PATH = :hard:gno:bin :right:gno:usr:bin
USRMAN = /usr/man
HISTORY = 100
status = 0
fignore = .a .root .sym
TERM = gnocon
LESS = -e
PROMPT = [%h) %S%t%s %C>
HOME = :hard:gno:user:root
user = root
nonewline = 1
[2] 9: 4lpm root> aat hiatory 30 uaar uaarl ; sat
PAGER = less
SAVEHIST = 25
PATH = :hard:gno:bin :right:gno:usr:bin
USRMAN = /usr/man
HISTORY = 30
status = 0
fignore = .a .root .sym
TERM = gnocon
LESS = -e
PROMPT = [%h] %S%t%s %C>
HOME = :hard:gno:user:root
user = userl
nonewline = 1
[3] 9: 4lpm root> unset savehist ; sat
PAGER = less
PATH = :hard:gno:bin :hard:gno:usr:bin
USRMAN = /usr/man
HISTORY = 30
status = 0
fignore = .a :Toot .sym
TERM = gnocon
LESS = -e
PROMPT = [%h] %S%t%s %c>
HOME = :hard:gno:user:root
user = userl
nonewline = 1
[6] 9:43pm root> echo • Currant value of $path = $path
Current value of $path = :right:gno:bin :rig:1t:gno:usr:bin
[7] 9:44pm root> echo "value of $path • " $path
value of :right:gno:bin :right:gno:usr:bin = :right:gno:bin
:right:gno:usr:bin
[9] 9:45pm root> sat usarl foo
[10] 9:45pm root> echo $userl
foo
[11] 9:45pm root> echo ${user}l
userll
[12] 9:46pm root> echo "echo • \$path = \$path" >> change .path
[13] 9:46pm root> echo "set path \$1• >> changa.path
[14] 9:47pm root> echo 'rehash' >> changa.path
[15] 9:47pm root> cat change.path
echo '$path= ' $path
set path $1
rehash
[16] 9:48pm root> changa.path '/dav/gno/utilitias•

Chapter 5 Shell Variables

$path = /dev/gno/orca /dev/gno/utilities
hashed 22 files.
[17] 9:49pm root> change.path $PATH
$path = /dev/gno/orca /dev/gno/utilities
hashed 55 files.
[18] 9: 50prn root> echo this is $homeplate
this is {variable horneplate wasn't found}
[19] 9:51pm root> echo this is ${home}plate
this is /dev/gnoplate {variable horne is found}

37

Shell Variables Chapter 5

38

Appendix A
Sample gsh session

The following represents a sample session in gsh. Many of the features discussed in this manual are
reviewed here. Comments are enclosed in braces (" { } ").

[1] gno> set
savehist = 25
path = /dev/orca/utilities /dev/gno/orca /dev/gno/utilities
history = 25
prompt = [%h] %C>
user = achin
horne = /dev/gno
nonewline = 1
[2] gno> echo environment variable PROMPT = $PROMPT
environment variable PROMPT = [%h] %C>
[3] gno> cat gshrc

{ gshrc is the startup file. }

GNO 2.0 gshrc file

Initialize our environment

set path=":hard:gno:bin :right:gno:usr:bin"
set prornpt="[%h] %S%t%s %C> "
set horne=":hard:gno:user:root"
set terrn=gnocon
export path prompt horne term
setenv history=100 savehist=25

#Set up standard prefixes for utilities.

prefix 2 :software:orca:libraries
prefix 3 :software:orca
prefix 4 :software:orca:shell
prefix 5 :software:orca:languages
prefix 6 :software:orca:utilities
prefix 7 :trnp

#Set up prefixes for Orca2.0(trn) 's benefit

prefix 13 :software:orca:libraries
prefix 14 :software:orca
prefix 15 :software:orca:shell
prefix 16 :software:orca:languages
prefix 17 :software:orca:utilities
alias ls 'ls -CF'
alias dir 'ls -al'

39

Sample gsh session

alias cp 'cp -i'
alias rm 'cp -p rm'
alias mv 'cp -p mv'
setenv usrman='/usr/man'
set fignore=' .a .root .sym'
alias zcat 'compress -cd'
setenv pager=less
setenv less=-e
set nonewline=l

Move to home directory

cd
[4] gno> cat gshrc > • ttyb&

Appendix A

{ .ttyb is the printer connected to the printer port }
[2]
[5] gno> echo Pile \'gshrc\' sent to printer.
File 'gshrc' sent to printer.
[6] gno> alias 1 'ls -P'; 1

{The Is "-F" option displays executable and directory files differently. }
:dev:gno
doc/ foo*
man/ message
release.notes samples/
[7] gno> history

1: set

gsh*
message2
todo

gshrc*
orca/
updates

2: echo environment variable PROMPT = $PROMPT
3: cat .gshrc
4: cat .gshrc > .printer&
5: echo File \'gshrc\' sent to printer.
6: ls
7: history

[8] gno> no_file
no_file: Command not found.
[9] gno> massage
message: Not executable.
[10] gno> unset USER

kern*
press.release
utilities/

{ Environment variables are not case sensitive. }
[11] gno> set PATH

path = /dev/orca/utilities /dev/gno/orca /dev/gno/utilities
[12] gno> set PROMPT

prompt = [%h] %C>
[13 j gno> unset PROMPT
% cp massage message2&
[2]
% rm doc&
rm: :dev:gno:doc directory
% rm -r doc&
[3]
% ls *
:dev:gno
faa*
message
samples/
% echo *

gsh*
message2
to do

gshrc*
orca/
updates

kern*
press.release
utilities/

man/
release.notes

gshrc faa message Finder.Data utilities press.release man release.notes todo
updates gsh kern samples doc orca rnessage2

40

Appendix A Sam pie gsh session

% echo g* m*
gshrc gsh message man message2
% echo g?
No match.
% pwd
/dev/gno
% clear ; df
.d## Volume

.d1 :system

.d2 :dev

.d3 :usr

.d4 :ramS

Device

.APPLESCSI.HDOl.
.APPLESCSI.HD01.
.APPLESCSI.HDOl.
.DEV2

% which la cp echo ps
ls: /dev/gno/utilities/ls
cp: /dev/gno/utilities/cp
echo: Shell Built-in Command
ps: Shell Built-in Command
% echo -n foo
foe % 1 .dev2 • applescsi.hdOl. 01

Free Total Capacity System
------- ------- -------- -----------

2S746 S0773 49% ProDOS
44868 6S108 31% ProDOS
44S26 4872S 8% ProDOS

493 S12 3% Pro DOS

{ Because of the previous "echo -n", the PROMPT is displayed on the line where echo output ended. }
:ramS
df
ls.system

:system

echo
prefix

AppleworksGS/ BASIC.System*
basic.launcher* emacs.icon
kermit/ publish.it/
snowterm/ system/

history
ps

HyperCard/
fontasm/
review

ls
set

ProDOS*
gutenberg/
shr.pic/

% alias print 1 echo 1 ; alias copy 1 cp 1 ;

catalog 1 ls -1 1 ; alias rename 1 mv 1

alias delete

% alias
1: ls -F
print: echo
copy: cp
delete: rm
catalog: ls -1
rename: mv
% set PROMPT= 1 [I] %C>
[3 0] gno> cd samples
[31] samples> cmpl ps.c keep=ps > .dev2/psr.
[2]
[32] samples> cmpl kill. c keep=kill > • dev2 /kill&
[3]
[34] samples> ls dummy_dir
[3S] samples> ls -9
ls: unrecognized option '-9'
usage: ls [-acdfgilqrstulACLFR] [name ...]
[36] samples> ls -9 >& .dev2/error

ls.ramS
which

a2fx/
icons/
shrinkit/

1 rm 1 ; alias

{ Useful aliases for Orca fans. }

{ Each pathname has a device name entry (cf. ps). }
[37] samples> cat < /ramS/error
ls: unrecognized option '-9'
usage: ls [-acdfgilqrstulACLFR] [name ...]
[38] samples> ls *.c;grep \#\i\n\c\1\u\d\e ["sfd]*.c

{ grep searches for a regular expression in a file and outputs the lines that match. }
comp.c
kill. c

dp.c
link.c

edit.c ffdir.c gar.c
ps.c setdebug.c

41

Sample gsh session

kill.c:#include <stdio.h>
kill.c:#include <memory.h>
kill.c:#include "3/work/gno/conf.h"
kill.c:#include "3/work/gno/proc.h"
kill.c:#include "3/work/gno/kerntool.h"
gar.c:#include <stdio.h>
gar.c:#include <orca.h>
gar.c:#include "3/work/gno/kerntool.h"
gar.c:#include <gno/signal.h>
ps.c:#include <stdio.h>
ps.c:#include <memory.h>
ps.c:#include <string.h>
ps.c:#include <orca.h>
ps.c:#include "3/work/gno/conf.h"
ps.c:#include "3/work/gno/proc.h"
ps.c:#include "3/work/gno/kvm.h"
edit.c:#include <stdio.h>
edit.c:#include <stdlib.h>
edit.c:#include <string.h>
edit.c:#include <ctype.h>
edit.c:#include <types.h>
edit.c:#include <gsos.h>
edit.c:#include <shell.h>
edit.c:#include <orca.h>
edit.c:#include <stddef.h>
edit.c:#include <texttool.h>
edit.c:#include <gno/kerntool.h>
comp.c:#include <stdio.h>
comp.c:#include <stdlib.h>
comp.c:#include <string.h>
comp.c:#include <ctype.h>
cornp.c:#include <types.h>
comp.c:#include <shell.h>
comp.c:#include <gsos.h>
comp.c:#include <orca.h>
comp.c:#include <texttool.h>
comp.c:#include <gno/kerntool.h>
link.c:#include <stdio.h>
link.c:#include <stdlib.h>
link.c:#include <string.h>
link.c:#include <ctype.h>
link.c:#include <types.h>
link.c:#include <shell.h>
link.c:#include <orca.h>
link.c:#include <texttool.h>
link.c:#include <gno/kerntool.h>
[3 9] samples> head link. c

Appendix A

{ head displays the first few lines of a file. }
I*

parsing code for compile, cmpl, cmplg

The options flags are set up in a bizarre format as follows:

76543210 76543210 76543210 76543210
yz
[40]
path
[41]

42

qrstuvwx ijklmnop abcdefgh
samples> set PATH
= /dev/orca/utilities:/dev/gno/orca:/dev/gno/utilities
samples> unset PATH

Appendix A Sample gsh session

[42] samples> aat PATH
Variable Not Found
[43] samples> rm m[e] [s] [s]age[2]
[44] samples> rehash
hashed 0 files.
[45] samples> rm who_carea about_tha parameters

{ tm will not be recognized as a command because the hash-table is empty. }
rm: Command not found.
[46] samples> sat path • /dev/orca/utilities -/orca -/utilities

/dev/orca/utilities /dev/gno/orca /dev/gno/utilities ;
[47] samples> sat PATH

path
[48] samples> sat path="-/ •• /orca/utilitias -/orca $HOME/utilities"

{ Filename expansion will be perfotmed before PA Tif is set. }
[49] samples> sat path

path ; /dev/orca/utilities /dev/gno/orca /dev/gno/utilities
[49] samples> rehash
hashed 68 files.

43

Sample gsh session Appendix A

44

Appendix B
Prefix Conventions

When gsh is started, GS/OS assigns certain values to individual prefixes, and usually the gshrc file also
sets some prefixes. A total of 32 prefixes are available to the user. The following list documents each
prefix and the purpose of each.

Number
@

*

0

1

2-8
2
3
4

5
6
7
9
10-12
13
14
15
16
17
18

Description
AppleShare prefix. If GNO resides on an AppleShare volume, this prefix is set to the
pathname of the user's directory on the me server; otherwise, this prefix is set to the same
pathname as prefix number 9.
Boot volume prefix. It is not possible to modify the value of this prefix with the shell's
prefix command. The only other way to access this prefix is the GS/OS _GetBootVol
call.
Prefix 0 is the current working directory. It is the prefix that is changed by the cd
command.
Directory a program resides in. In the shell, this is usually /bin. The kernel sets this prefix
(and 91) appropriately for each program that is executed.
Used by Orca 1.0 languages and utilities
If the ORCA languages are being used, prefix 2 points to the ORCA Libraries directory.
This prefix should point to the directory that contains ORCA.SYS16.
ORCA Shell directory should point to the directory that contains the EDITOR, SYSTABS,
SYSCMND, etc. files.
ORCA Languages directory
ORCA Utilities directory
ORCA Temp directory - setting this to a RAM disk makes certain editor operations faster.
Same as prefix 1/
Standard input, output, and error device names. GNO sets these to be '.ttyco'.
Same as prefix 2/ above if Orca 2.0 languages are being used. _
Same as prefix 3/
Same as prefix 4/
Same as prefix 5/
Same as prefix 6/
Same as prefix 7/

45

Appendix C
Errors

gsh tries, when an error occurs, to output an informative error message that will lead you to the solution
of your problem. This appendix documents all gsh error messages and what the probable cause of the
problem might be. There are five classes of errors: generic gsh, command-entry, syntax, execution, and
built-in. Each error is discussed separately.

Generic gsh Errors

These errors can typically occur at any time and may not be directly related to something the user has done.
Some of them are trivial, and some are very serious and should be reported immediately.

gsh: There are stopped jobs.
All jobs must be killed before exiting the shell. Use the jobs and kill commands.

Command Editing Errors

Command editing errors occur when entering information on the command-line. If you try to move the
cursor too far to the left or right of your command-line (i.e. before the first character or after the last
character), an error will occur. At present, gsh indicates a command-entry error with a Beep. This is to
notify you that the action you requested is not possible. ·

Syntax Errors

Syntax errors occur while gsh is trying to understand the command you have entered on the command
line. Problems arise when you wish to quote an argument (") and only enter one quote.

gsh: Missing ending ".
A second " wasn't supplied when quoting text.

gsh: Missing ending .
A second ' wasn't supplied when quoting text.

gsh: Too many arguments, so no dessert tonight.
The command-line contained too many arguments which exceeded the available memory allocated by gsh.

gsh: Not enough memory for arguments.
No memory was available for allocating command-line arguments.

gsh: Extra '<' encountered.
gsb: Extra '>' or '>>' encountered.
gsb: Extra '>&' or '>>&' encountered
Text may be redirected to only one file.

gsh: No file specified for '<'.
gsb: No file specified for '>' or '>>'.
gsb: No file specified for '>&' or '>>&'.
A file must be specified when redirecting I/0.

46

AppendixC

gsb: '1' conflicts witb '>' or '>>'.
gsb: ' I ' conflicts wi tb '< ' .
Piping is another form of redirection, thus pipes and redirections cannot be mixed.

Execution Errors

Errors

After gsh parses the command-line, it will then execute the command and pass any arguments to the
command. If, however, the command does not exist, gsh will report an error. The reason the command
does not exist could be either the command name was typed wrong or the command does not exist.

$0: Command not found.
$0 represents the command to be executed. Either the command name was entered incorrectly or the
command does not exist. Recheck the spelling of the command and check $PATH to make sure the
command exists in the pathname list.

$0: Not executable.
$0 represents the command to be executed.

beb beb, next time you'll need to specify a command before redirecting.
Redirection was specified but the command-line had no command.

cannot fork (too many processes?)
An error was encountered forking a process. The most likely culprit is there are too many processes
running.

Built-in Command Errors

These are errors which can be returned by many of the built-in commands. Every built-in also contains a
Usage message on the proper invocation method.

cd: Not a directory
Tried to change the cwd to a file that isn't a directory.

prefix: could not set prefix, patbname may not exist.
GS/OS Prefix command failed, most likely the pathname did not exist or the disk is damaged.

setdebug: Unknown flag
An unknown flag was sent to setdebug. Run setdebug with no arguments for a list of possible flags.

ps: error in kvm_open ()
ps was unable to access the process data structure. It would be amazing that the kernel is still running for
this error to occur.

set: Variable not specified
A variable was not passed to set, for example, "set =bar". Make sure the variable name was specified
without the preceding dollar sign. For example, if foo is not set, then "set $foo=bar" would be
expanded to "set =bar", this resulting in this error.

kill: Invalid signal number
kill: Invalid signal name
See Appendix C for a list of valid signal numbers and names.

47

Errors

~g: No job to ~oregrouZld.

bg: No job to backgrouZld.
stop: No job to stop.
There aren't any jobs so this command is useless.

~g: No sucb job.
bg: No •ucb job •
.11top: No sucb job.
kill: No .IIUCb job.
The specified job (or process) doesn't exist.

~g: Gee, tbi• job is already iZl tbe ~oregrouZld.

bg: Gee, tbis job is already iZl tbe backgrouZld.
stop: Gee, tbi.ll job is already stopped.

Appendix C

Well, this should be self-explanatory. Also, some of these should be impossible to get, unless you're
bound and determined to crash gsh, but then, these errors will keep you from crashing it, so, what's the
point?

48

Appendix D
Signals

The following list describes all signals present in the GNO Multitasking Environment. These signals are
used to communicate with processes and the GNO kernel. gsh provides a means to send signals to
processes via the kill command. Furthermore, GNO/ME provides interfaces for C and Assembly
Language programmers to handle signals in their programs. Note that not all of these signals are actually
used in GNO/ME 2.0.

N arne O'alue)

SIGHUP (1)
SIGINT (2)
SIGQUIT (3)
SIGILL (4)
SIGTRAP (5)
SIGABRT (6)
SIGEMT (7)
SIGFPE (8)
SIGKILL (9)

SIGBUS (10)
SIGSEGV (11)
SIGSYS (12)
SIGPIPE (13)
SIGALRM (14)
SIGTERM (15)
SIGURG (16)
SIGSTOP (17)
SIGTSTP (18)
SIGCONT (19)
SIGCHLD (20)
SIGTTIN (21)
SIGTTOU (22)
SIGIO (23)
SIGXCPU (24)
SIGUSRl (30)
SIGUSR2 (31)

Description

Hangup.
Interrupt.
Quit.
lllegal Instruction.
Trace trap.
Abort (cf. abort(3)).
Emulator trap.
Arithmetic exception.
Kill. This signal cannot be caught, blocked, or ignored. If a signal is not
specified for the kill command, this signal is sent to the process.
Bus error.
Segmentation violation.
Bad argument to system call.
Write on a pipe or other socket with no one to read it.
Alarm clock.
Software termination signal.
Urgent condition present on socket.
Stop. This signal cannot be caught, blocked, or ignored.
Stop signal generated from keyboard.
Continue after stop. This signal cannot be blocked.
Child status has changed.
Background read attempted from control terminal.
Background write attempted to control terminal.
Input/Output possible signal.
Exceeded CPU time limit.
User defined signal 1.
User defined signal 2.

49

Appendix E
Non-Compliant Applications

GNO/ME wasn't really designed with the intention of making EVERY program you currently run work
under GNO/ME; that task would have been impossible. Our main goal was to provide a UNIX-based
multitasking environment; that we have done. We made sure as many existing applications as we had time
to track and debug worked with GNO/ME. The current list of compatible and non-compatible applications
can be found in the file "RELEASE.NOTES" on the GNO/ME disk.

However, due to the sheer number of applications and authors, there are some programs that just plain
don't work; and some that mostly work, except for annoyances such as two cursors appearing, or
keyboard characters getting 'lost'. The problem here is that some programs use their own text drivers
(since TextTools output was very slow at one time); since GNO/ME doesn't know about these custom
drivers, it goes on buffering keyboard characters and displaying the cursor. There is a way, however, to
tell GNO/ME about these programs that break GNO/ME's rules.

We've defined an auxType for Sl6 and EXE files, to allow distinction between programs that are
GNO/ME compliant and those that are not. Setting the auxType of an application to $DCOO disables the
interrupt driven keyboard buffering and turns off the GNO/ME cursor. Desktop programs use the
GNO/ME keyboard 1/0 via the Event Manager, and thus should not have their auxType changed.

You can change a program's auxType with the following shell command:

chtyp -a \$DC00 filename

where filename is the name of the application. As more programmers become aware of GNO/ME and
work to make their software compatible with it, this will become less of a problem, but for older
applications that are unlikely to ever change (like the America OnLine software) $DCOO is a reasonable
approach.

50

Appendix F
Termcaps

'Termcap' is short for 'terminal capability', and is the name of a database which applications can use to do
full-screen output on any kind of terminal. The termcap database contains records for the various
supported terminals, each of which contains fields that look like this:

cap=value

cap is a two-letter code that represents a cursor movement, screen mode change (such as inverse or
underline mode), and various other things. Value is usually a sequence of control characters that is sent
to a terminal to initiate the desired action. Value can also be 'boolean', or yes/no, values, for such things
as "Does this terminal support cursor movement?". The term cap file is documented in the electronic
manual entry termcap(5).

The termcap library does not specifically require GNO/ME.

The following terminal types are supported in the GNOIME termcap file:

gnocon
CONSOLE
ptse
vt100
ansisys
xerox820
iw1
iw-alt
deskjet

GNOConsole
GS/OS .console driver
Proterm Special Emulation
DEC VT-100 terminal
MS-DOS ANSI.SYS
Xerox 820-II CP/M terminal
Apple Image Writer I printer
Alternate Image Writer I printer
Hewlett Packard DeskJet 500 printer

The printer entries allow a formatted electronic manual page to be sent to the printer. For example, the
following script would bring up the manual page for 'Is', format it for the DeskJet 500, and print it with
italics and boldface:

set temp=$term
set term=deskjet
man $1 > .ttyb
set term=$temp

5 1

Tenncaps Appendix F

52

Glossary

Alias.

Applesoft.
APW.
BASIC.
Built-in command.

Command.

Directory.

Environment.

Environment file.

Export.
File.

Filter.

Flag.

Glob.
GNO/ME.

GNO Kernel.
GNO Shell.
gsh.
GS/OS.
History.

History file.

Interrupt.

1/0 Redirection.

Job.

A name used as an abbreviation for one or more commands. An alias allows you
to replace any command string with a short sequence of characters.
An implementation of BASIC for the Apple II.
Apple Programmer's Workshop. Similar to ORCA.
Beginners All-purpose Symbolic Instruction Code. A simple computer language.
A command processed by gsh. These commands are not external to the shell, but
are included within the gsh program.
An action for gsh to perform. Commands can be either simple or compound. A
simple command is an alias assignment, variable assignment, 110 redirection, or
built-in command. A compound command is a pipeline.
A special type of file that contains a list of other files; usually used to categorize
files related in some way.
The state of a process, which includes information such as its open files, current
directory (working directory), and local and global variables. Three environments
exist under gsh:
Child environment:: The environment of the child process.
Current environment:: The environment of the current process.
Parent environment:: The environment of the parent process.
A file that is interpreted by an application to allow the user to customize its
operation. For gsh, this file is "gshrc".
A way to pass a variable from a parent process to child process.
An object used to store data and/or programs. On the IIGS, files are tagged with
types such as EXE, SRC, TXT, etc.
A command that reads from its standard input and writes to its standard output.
For example, a filter program could be written to convert all characters to upper
case. Filters are used mainly in pipelines.
A character used to represent an option to a command. Flags are either short or
long options whose character representations are"-" and"+".
Slang for Pathname Expansion.
GNO Multitasking Environment. The complete package including the GNO
kernel and the GNO Shell.
Heart of GNO/ME. Executes processes when asked by the GNO Shell
Provides an interface between the user and the GNO kernel.
GNO Implementation of a UNIX-like shell.
16 bit Operating System for the Apple IIgs.
A variable number of command-lines saved by gsh for future reference. The
number of command-lines saved is dependent on the $HISTORY environment
variable.
A file containing command-lines entered while in a gsh session. The number of
command-lines saved is dependent on the $SAVEHIST environment variable.
A signal generated by a sequence of keyboard characters or by a command that
terminates the current executing process, unless the process has set up a trap to
handle the interrupt signal.
The process of changing the standard input, standard output, and standard error
associated with a process so that it is redirected to a file instead of the console.
A set of related processes. A job can be either:
Background job :A process that executes with the current process. Background
jobs are not associated with the terminal.

53

Multiprocessing.
Multitasking.

ORCA
Path search.
Pathname.

Pattern.
Permission.

Pipe.

Pipeline.
Process.

Process id:

ProDOS.
Prompt.
Quoting.

Reserved word.
Script.
Signal.

Standard Error.

Standard Input.
Standard Output.
Tilde Expansion.

UNIX.

Variable.

Wildcard.
Working directory.

54

Glossary

Foreground job : A process that is currently executing and which is associated
with the terminal.
Indicates a machine with more than one CPU.
The ability to run more than one program at a time, or the illusion of more than
one program running at a time- usually the latter.
Shell programing environment for the Apple II gs. Also a type of whale.
The means of searching a pathname list for a command or script
A string used to identify a file.
Pathname completion. The means of generating all pathnames matching a given
pattern.
Pathname expansion. The means of replacing a pattern with a list of pathnames
matching that pattern.
A string of characters used to match literal characters and/or multiple characters.
Each file has certain permissions associated with it: destroy, rename, backup,
invisible, write, and read.
A conduit through which a stream of characters can pass from one process to
another. This is accomplished by linking the standard output of one process to the
standard input of a second process.
Two or more processes connected together by pipes.
A single thread of execution that consists of a program and an execution
environment.
Child process: A new process created by another process.
Parent process: A process that creates a child process.
Each active process is uniquely identified by a positive integer called the process
id.
8-bit Disk Operating System for Apple II computers.
A message displayed by gsh when it is ready to receive a command.
A means of including special characters as arguments to a command or as the
command name. Certain characters have certain meanings to gsh and quoting
them makes gsh ignore them.
A word that is treated specially by gsh. This word is part of the gsh grammar.
A sequence of commands contained in a file.
An asynchronous message that consists of a number or name that can be sent
from one process to another.
The file associated with error messages for a process. This file is usually the
terminal.
The ftle associated with a processes input This file is usually the terminal.
The ftle associated with a processes output This file is usually the terminal.
Words beginning with"-" are treated specially by gsh. The"-" is expanded to
the value of the HOME variable.
Popular operating system which has growing use in education and business. One
of the first operating systems to support multitasking.
A named location in gsh that contains text. The text of a variable can be expanded
in a command by preceding the variable name with a dollar sign($).
See Pattern and Pathname Expansion.
The current directory.

Index
"C 19
$35
"Z 19
$0 33
$1 33
$2 33
$< 33
$DC0050
$ECH034
$FIGNORE 10, 34
$HISTORY 9, 34
$HOME9,34
$IGNOREEOF 34
$NOBEEP34
$NODIREXEC 34
$NOGLOB 34
$NONEWLINE 34
$PATH 31, 34
$PRECMD34
$PROMPT34
$PUSHDSILENT 35
$SA VEHIST 9, 35
$TERM35
$TERMCAP35
$USER 35
& 17
. 21
.. 21
.i.OA 26
< 16
> 16
>& 16
>> 16
>>& 16
\n 27, 35
\r 27, 35
\t 27, 35

. accelerator 19
alias 15, 30, 34
ansisys 51
AppleS hare 45
argument 22
aux.Type49
Background 17, 19
backward-char 8, 25
backward-delete-char 8, 25
backward-word 9, 25
BASIC 13
beginning-of-line 9, 25, 26 _
bg 19, 29

bindkey 7, 25
BLOCKED29
Bourne shell 3
Built-In Commands 7
built-ins 25
C shell3
cat 16, 22
cd 26,45
chdir 26
child process 33
chtyp 50
CLEAR 8, 26
clear-screen 8, 25
cmpl18, 19
coff 14, 17
command arguments 7
command name 7, 15
command-line 3, 7, 11, 15, 17, 19
command-line buffer 15
command-line editor 7, 9, 10, 25, 26
commands26
complete-word 10, 25
CONSOLE 51
cp 18, 20, 22, 33
CTRL-A9, 26
CTRL-B 8
CTRL-D 8, 9, 10
CTRL-E9
CTRL-F 8
CTRL-K26
CTRL-L 8
CTRL-N 10
CTRL-P 10
CTRL-R 8
CTRL-X 8
DELETES
delete-char 9, 25
deskjet 51
Desktop 50
df26
dirs 28
done 19
DOWN-ARROW 10
down-history 10, 25
echo 7, 16, 24, 27
-21
editor 4, 5
end-of-line 9, 25
Errors 46
ESC 11, 26
ESC-Ell
ESC-Y 26
Event Manager 50

55

Index

EXE 5, 7, 25, 33, 34, 50
EXEC 5, 7
exit 27
export 33
fg 19, 29
filter processes 17
foreground 19
fmward-char 8, 25
forward-word 9, 25
globbing 22, 34
GNO Installer 3, 4, 9
GNO Kernel 3, 4, 5, 17, 25, 49
GNO shell 3, 4, 5, 9, 15, 17
GNO/ME3,4,5, 13, 16, 17,19,49,50
gnocon 35, 50
grep 17, 22
GS/OS 16
gsh 3, 5, 7, 9, 10, 11, 15, 16, 18, 19, 21,
22,24,26,33,49
gshrc 3, 4, 5, 9, 11, 15, 33
GUI 3
hash 31
HFS 23, 34
HISTORY 9, 27, 34
history buffer 9
home directory 21
1/050
insert 9, 11
iw-alt 51
iw1 51
job 19
Job Control 19
job number 17
jobs 29
kern 5
kernel 18, 26
kill 19, 29
kill-end-of-line 9, 25
kill-whole-line 8, 25
Korn shell3
LEFT-ARROW 8
less 17
list-choices 10, 25
login(1) 35
long options 13, 14
ls 13, 14, 16, 18, 19, 22, 33, 51
man 13, 14,17
manual pages 13
mkdir 22
modem 16
more 13, 17, 19, 23
MouseText 33
multitasking 17, 19,33

56

mv33
NEW29
newline 8, 25
N ullProcess 18
OA 7, 11,26
OA-<9, 26
OA->9
OA-CLEAR26
OA-D9
OA-E 9, 11
OA-LEFT ARROW 9
OA-RIGHT-ARROW 9
OA-Y26
OMF17
Open Apple 7
option arguments 13
ORCA 4, 5, 15, 16
ORCA shell 3, 17
overstrike 9
paging 17
parameters 7
parent process 33
PATH 4, 5, 24
path delimiter 4
Pathname Expansion 22
pathname separator 4
PAUSED30
performance 19
pipeline 16
popd 28, 35
pre-emptive multitasking 17
prefix 31
Prefix Conventions 45
printer 16
process 19
process ID 17
ProDOS 13, 23
prompt5
ps 18, 19, 20, 29
ptse 51
pushd 28, 35
pwd 28
qtime 7
quote 35
raw-char 25, 26
READY29
redirect 16
redirection 16
redirection operators 16
redisplay 25
redraw 8
regular expressions 22
rehash 24, 31

Index

RELEASE.NOTES 50
Remote Access 11
RETURNS
RIGHf-ARROW 8
running 19, 29
S16 50
Sample gsh session 39
SAVEIDST9
Scope 33
script 11, 24, 28
serial port 16
set 31, 35
setdebug 30
setenv 31
shell script 33
short options 13, 14
SIGABRT49
SIGALRM49
SIGBUS 49
SIGCHLD49
SIGCONT49
SIGEMT49
SIGFPE 49
SIGHUP 49
SIGILL49
SIGINT 49
SIGI049 .
SIGKILL49
SIGNAL 25, 29
signals 49
SIGPIPE 49
SIGQUIT49
SIGSEGV 49
SIGSTOP 49
SIGSYS 49
SIGTERM49
SIGTRAP49
SIGTSTP 49
SIGTIIN 49
SIGTIOU 49
SIGURG 49
SIGUSR1 49
SIGUSR2 49
SIGXCPU 49
source 5, 28
standard error 16, 18
standard input 16, 33
standard output 16, 18
stop 19, 30
stopped 19
storage device 16
SUSPENDED 30
SYS16 5, 7, 34

TAB 10
TERM33
termcap 35, 50
terminal II, 16, 50
terminal emulation 35
TextTools 50
tilde 21
toggle-cursor 9, 25
tset28,35
ttya 16
unalias 15, 31
undefined-char 25, 26
unhash 31
UNIX 5, 14, 34, 50
unset 35
UP-ARROW 10
up-history 10, 25
variables 3, 33, 35
vi4
vt100 51
WAITING30
W AITSIGCH 30
which 28
wildcards 22
word 7
xerox820 51

57

