
DrawTools 3.1

by Ken O. Burtch

Copyright 1992-3 by Pegasoft of Canada
Copyright 1992-3 par Pegasoft of Canada

For questions or comments, please write to the following address:

Pegasoft
-Honsberger Avenue, R.R.#1
Jordan Station,Ontario,.Caiiadil.

LOR ISO

) '/

Some examples use libraries from ORCAlPascal, Copyright 1991, The)3yte Works, Inc.

Unless otherwise noted, trademarks belong to th~irresP69tive comRMies.

CINDY 8. MARSHALl BROWN
C/o SAUDI ARAMCO BOX 1039
DHAHRAN 31311
KINGDOM OF SAUDI ARABIA

.1 ,

MWOilfl .IJAH::l0MA ~ WHW')
(!l:(H lWO O;)M! :. \ ,. ';

t i j
blG,AfIJ\ i .. ,iUP", > r~

Part I. User Guide
I. Introducton
2. Graphics on the IIGS
3. Animation
4. Other Functions

Part II. Reference
Introduction
Housekeeping Tools
Low-level Drawing Tools
Drawing Tools
Library Management Tools
Animation Tools
Screen Tools
Scrolling Tools
Palette and Colour Tools
SCB Interrupt Tools
Printing Tools
Driver Tools
Miscellaneous Tools

Part III. Appendices

Table of Contents

Appendix A - DrawTools' error sunmlary
Appendix B - Direct Page Usage
Appendix C - DrawTools and Other Toolsets
Appendix D - Game and Net Drivers
Appendix E - Pic Ed
Appendix F - Library Converter
Appendix G - Changes Since DrawTools 3.0

Tool Index

pg. 1
pg.4

"g. 8
pg. 22

"g. 28
pg. 30
pg. 32
pg. 34
pg. 37
pg. 38
pg.42
pg. 45
pg. 46
pg. 49
pg. 51
pg. 53
pg. 56

pg. 60
pg. 61
pg. 62
pg.63
pg.66
pg. 67
pg. 68

pg.69

DrawTools 3.1

I. User Guide

1. Introduction

1.1. Introduction & Legal Stuff

The part of this manual is a general introduction to DrawTools. It isn't a tutorial on computer graphics, although
some basic topics are discussed. For more in depth information on specific tools, consult the reference section.

We'd love to hear from you. If you have any questions, comments, or complaints, please feel free to write to
Pegasoft at:

Pegasoft
Honsherger Avenue, R. R. # I
Jordan Station, Ontario, Canada
LOR ISO

This manual and the related software contained on the diskettes are copyrighted materials. All rights reserved. Duplication
of any of the above described materials, for other than personal use of the purchaser, without express written pcnnission of
Pegasoft of Canada is a violation of the copyright law of the United States and Canada, and is subject to both civil and
criminal prosecution.

Pegasoft and DrawTools are tmdemarks of Pegasoft of Canada.

1.2. What is DrawTools'?

Welcome to DrawTools, a collection of over 100 usefill graphics and animation tools for the IIGS. The first version
was released as shareware around the fall of 1990. Since then, it has significantly grown, with new features and
more versatility.

Feel free to distribute the TOOL098 file with any programs you make, but if you wish to distribute any other
files on the DrawTools disks, please get prior pennission from Pegasoft.

1.3. System Requirements

DrawTools 3.1 requires the following:

An Apple IIGS with system software 5.0.2 and at least 9K free RAM in bank O.
To use DrawTools, the following toolsets must he active: Tool Locator, Misc. Tools, Memory Manager,

QuickDraw II.

1.4. Installation

1. Copy the T00L098 file to the Tools folder of your startup disk. (This is DrawTools.)
2. Copy the DT.Drivers folder (the folder and its contents) to the System:Tools folder of your startup disk.
3. Copy the icon file to your Icons folder.

The DrawTools disks also contain the following:
a. PicEd 3.0, a simple editor for picture libraries
b. Lib.Converter 1.2, a utility which translates a screen template into a picture library. The folder
includes some sample templates.
c. Demo.Game, a small assembly language game that demonstrate some of the animation tools

DrawTools 3.1 2

d. Demo.Sys 16. a demo program written in Micol Advanced Basic 4.2
e. sample programs for a wide variety of computer languages

1.5. Using DrawTools with ...

CompletelTML Pascal II - an interface file written in TML Pascal II is included on the disk in the TML.Pascal
folder. Copy the object file to the folder containing the interface tiles for the other toolsets. Include DrawTools in
your US ES list at the heginning of your program.

Micol Advanced BASIC - You need to use the TOOLBOX command. A set of aliases are supplied for users with
the latest version of BASIC: you can copy these into your program or you can use the INCLUDE command. Each
alias requires a space after the tool name.

rTIl DrawShadow will not work unless you are mnning a stand-alone application. There are also some tools
lLJ that require a Pascal string (not a BASIC string): a length (byte) followed by the text of the string. You

cannot use these tools directly: you will either have to constmct a string with POKEs, or use Micol Macro.
All the toolsets that DrawTools requires are started for you when you use HGR or HGR2.

Merlin 16+ - a macro file (Draw.Macs.S) is included on the disk. Copy it into your MACRO.LIBRARY
subdirectory. and USE it in your source files.

ORCNPascal - an interface file (Drawtools.int) is included on the disk. Copy this file into OrcaPascalDefs. In
your program. include DrawTools in your USES list.

ORCA/M - A macro file (mI6.DrawTools) is included on the disk. Copy this file into your ainclude folder. Use it
like any other macro file.

ORCNC -TIlere are no interface files available: you can use DrawTools if you use the necessary tool definitions.

[E] DrawTools will not work with Prizm.

Pe~asus Pascal - Follow the ORCAlPascal directions.

Example: Starting DrawTools 3.1.
Pegasus Pascal: Start it like any other toolset

Use8 Ccmnon, ... , DraWIbola
I start required tools, or use StartGraphice
LoadOneTool 99, 0

DPHandle = NewHandle(256, MyID, $C005, 0)
DP = ord(DPHandle')

DrawStartUp OP, MyID
Bxten.dBuffera

ORCA/Pascal: Start it like any other toolset
Usee common, "0, DrawTbols;
{ start required tools, or use StartGraphice
LoadOneTool (98, 0);
DPHandle 1= NewHandle(256, MyID, $C005, 0);
OP 1= ord(DPHandle A

),

Dra,.IIH.l).rtOp(OP, MyID) J

ExtendUuffersl

Load DraWl'ools
allocate direct page space
convert to an integer
start DrawTools
if using a lot of pixies

Load DraWI'ools }
allocate direct page space
convert to an integer)
start DraWl'oole J

if using a lot of pixies

DrawTools 3.1 3

BASIC: Use the following commands:
REM Start required tools, or use HGR!HGR2.
TOOLBOX (1, lSI 98, 0) I REM Tool Locator'e LoadOneTool
DraWI'ools_Handle = 256 I REM Allocate direct page apace
DrawTools_Addreee = 0
POKE 202, 1

Get_Mem(DraWI'ools_Handle, DrawTools_Addrese)

Address%: = mr{DraWI'ools_Addrees) I REM Convert to an lnte:;:rer
MyID% = Peek(23B) + Peek(239) * 256
TOOLBOX (-DrawS tartUp I Address%, MyID%)

REM Without aliases I TOOLOOX(98, 2 I Addreee%, MyID% }

TOOLBOX (-BxtendBuffero) I REM If using a lot of pixies

Merlin 16+: Start it like any other toolset
USE 4lDraw.Macs
-LoadOneTbol #98,#0
-NewHandle #$100,MyID,#$C005,#0
PLA

PuehWord MyID
_DrawS tartup

_ExtendBuffere

ORCAIM: Start it like any other toolset.
MOOPY mI6.DraWI'oo!e

ph2 #98 1 load Drawrools
ph2 #0
_ LoadOneT=l
ph4 #0
ph4 #$100
ph2 MylP
ph2 #$C005
pM #0
_NewHandle
pha
ph2 MyID
_DrawStartup

_BxtendBuffere

Examples: Stopping DrawTools 3.1.
Pegasus Pascal:

Dra.wShutDown

ORCAIPascal:
DrawShutDolfn;

BASIC:
'IOOIIDX(-DrawShu tDOWJl

REM Without aliases I TCOLBOX(98, 3)

Merlin 16+:
DrawShutDown

ORCAIM:
DrawShutDown

if using a lot of pixiee

if using a lot of pixies

DrawTools 3.1 4

2. Graphics on the lIGS

2.1. A Brief Introduction

Graphics is the art of drawing with a computer. In the lIGS, there is a special toolset dedicated to drawing called
"QuickDraw lI"; or QuickDraw for short. QuickDraw provides all the basic drawing functions for the average
application: it draws lines, rectangles, ovals, text, cursors and many other things you see on the screen. It's
impossible to make a complete list of the QuickDraw tools here since there are well over 200: consult the Apple
lIGS Toolbox Reference or any book introducing lIGS programming for more information.

I.E] ~: Whenever you use HCOLOR, HPLOT, or the other BASIC commands, BASIC uses QuickDraw.

Before discussing the details of DrawTools, you should know a little bit of how pictures are displayed on the
lIGS screen. We will be discussing 320 mode to keep things simple. The super high-resolution graphics screen is
located in bank $El of memory. Each dot on the screen, or "pixel", consists of half a byte of memory, or 4 bits.
This means up to sixteen colours can normally be displayed on the screen. The screen consists of 320 pixels
horizontally and 200 pixels vertically. These pixels are located in the area $E12000 to $El9CFF of memory.

The next 200 bytes, starting at $EI9DOO, are for the Scanline Control Bytes, or SCB's, one for each line on the
screen. The SCB's determine the attributes for that line:

bit 0 ... 3 - the palette of the line (0 to IS)
bit4 - zero
bit 5 - I if fill mode is active. With fill mode active, colour 0 (usually black) behaves differently.

If you draw an area of the screen in colour 0, it will appear in the same colour as the area of the
screen to the immediate left. The colour is "pulled" across the black areas of the screen, filling
them in.

bit 6 - I will cause an SCB interrupt on this line
bit 7 - I for 640 resolution; 0 for 320 resolution

The memory located from $E19EOO to $E19FFF contains the 16 colour palettes (or "color tables")_ Each
palette contains 16 integer RGB values that describe the 16 colours you can see on the screen. QuickDraw only Uses
palette 0 (see Figure 1). Palettes and ROB colour words are discussed more below.

Fi !lure I : The OuickDraw II colours (in 320 mode)

Ii. NIl1llIl rum Ii. N!!!lI!l rum
0 black $000 8 flesh pink $FA9
1 dJukgrey $777 9 yellow $FFO
2 brown $841 10($A) green $OEO
3 purple $72C \1 ($B) light blue $4DF
4 blue $OOF 12($C) lilac purple $DAF
5 dJukgreen $080 13 ($D) periwinkle blue (desktop) $78F
6 orange $7FO 14 ($E) light grey $CCC
7 red $000 15 ($F) white $FFF

This whole section of memory, from $EI2000 to $EI9FFF, can be "shadowed" from $012000 to $019FFF in
bank 1. This area is called the shadow screen. You can use the shadow screen if you set bit 15 in tbe Master SCB
when you start QuickDraw up. When the shadow screen is in use, drawing takes place much faster than usual. In
addition, the shadow screen can be made invisible (with DrawTools ShadowOft) so that QuickDraw & DrawTools

DmwTools 3.1 5

dmw many times faster than without shadowing. but the pictures will remain hidden until use DmwTools'
QuickWipe.

2.2 Working with Colour

On the IIGS. the super hires screen can display 16 colours at a time with a single palette. You can change the
current drawing colour using QuickDraw's SetSolidPenPat(c) or BASIC's HCOLOR=c. The hue and brightness of
each colour is described by an RGB colour word. a combination of red. green and blue components. Each
component can be in a range from 0 to IS. For example. black is 0.0,0; white is 15,15.15; bright red is 15.0,0;
orange is 15.7.0.

DrawTools has a tool called SelC%ur that will take the red, green and blue components and give you the
corresponding RGB value.

Example: Creating the colour "orange" with SetColour.
Pascal: RGBColour 1= SetColour (15, 7, 0) i

BASIC: TOOLBOX (-Setcolour , 0, 15, 7, 0, RGBColour%)
REM Include 0 at start for RGBColour%1 Add one a for each result value.

Example: You can use QuickDraw's SetColorEntry to change a default colour:
Pascal: SetColorEntry(0, 5, SetColour(15, 71 0 });
BASIC: TOOLBOX (-SetColour , 0, 15, 7, 0, RGBColour%)

TOOLBOX (4, 161 0, 0, RGBColour%)

Besides SetColour. there is a SelColPercenl will do the same thing. accept you use percentages (0 ... 100) of
red. green and blue components instead of values from 0 ... 15. FadeColour will make an RGB value darker or
brighter. Blende%ur will blend to colours together to make a new colour. FindC%ur will find the closest
colour in a palette to the colour word you specify.

Although QuickDraw uses one palette. the IlGS can actually display colours from 16 different palettes at olle
time. Each line must have only one palette. DrawTools has a tool called SelPalette that will change the palette
for a set of lines.

Example: Changing the top half of the screen (lines 0 ... 99) to palette I.
Pascal: SetPalette(0, 99, 1),

BASIC: TOOLBOX(-setPalette, 0, 99, 1)

Now anything you dmw on the top half of the screen will appear in the colours of palette I instead of palette O.
You can set the colours of any of the palettes using SetColorEntry(palette. colour. RGBvalue); or in BASIC,
TOOLBOX(4.16: palette%. colour%. RGBvalue%).

FadePal will make make all the colours in a palette darker. UnfadePal will make all the colours in a palette
brighter. A more powerful version of FindColour is FindPalette. Give FindPalette a palette of colours. and it
will try to match them up to colours in the current palette. 'This tool is useful for NDAs: you can never be sure
which colours are on the screen if an NDA is mnning under a paint program. FindPalette can tell you if the colours
have changed. and to what.

Example: See the reference for more details. If you want to find the closest colours on the screen to the standard 320
palette:

Defme the colours array:O. 1.2.3.4.5.6.7.8.9.10.11.12.13.14.15
Define the Palette:$OOO. $777. $841. $72C $78F. $CCC. $FFF
After the call is made. the values in col aUf list will change to reflect the actual numbers for these colours on the

current screen (or the closest colours them).

DrawTools 3.1 6

2.3 I"ades, Wipes, and Dissolves

What set of tools would be complete without some way to gracefully change from one scene to another? TIlere
are four basic ways to make such a transition. The simplest way is to erase the screen and draw a new picture; it's
easy, effective, but it lacks a certain class, especially on a computer with the possiblities of the IIGS. A common
way to switch pictures is with a fade. A fade changes all the colours to a single colour, and then reverses the process
to reveal a new picture. While the colours are identical, any drawing you do is invisible. DrawTools provides two
fades: (I) QuicH'ade, the standard fade used in so many applications, which dims all the colours in the first eight
palettes to black; (2) IncrFade, which fades out everything except the red component, and then fades to black

A second method of switching pictures is with a wipe. A wipe copies a picture from shadow screen onto the
screen in a special order. DrawTools provides two wipes which copy the shadow screen to the main screen: (1)
QuickWipe, which instantly copies one to the other, and (2) VB Wipe which copies using a Vencian blind effect.

The last way to change screens is a dissolve. This is a special kind of wipe which operates on a pixel-by-pixel
basis. There are no dissolves in DrawTools.

Example: How to fade to black, draw something new, and tmfade to reveal it.
Pascal:

QuiokFadeOut (1);
repeat until FadeDone;
{draw the new screen here}
Quiokl!'adeIn(l) I

repeat until FadeDone,

BASIC:
T(X)LBQX("'OuiokPadeOut I l}

REPEAT
TCX)L80X(.... PadeDon. I 0; FadeDone%)

UNTIL FadeDone% (> 0
REM Draw the new Bcreen here
TCX)LBQX{"'OuiakPadeln I 1)
REPEAT

TCOLBOX{ P'adeDone I 0; FadeDone%}

UNTIL FadeDone% <> 0

Merlin 16+:

QFOLoop

... QuiokFadeout #1
-Fad.Done
PIA
SEQ QFOLoop

* Draw new screen here
'-QuiokFad.ln #.1

QFILoop "'Pad.Done
PLA

8EQ QFILoop

Example: How to use the Venician Blind wipe tool to wipe a new screen over an old one.
Pascal:

(make sure the shadow screen is allocated}
DrawShadow1
ShadowOff1
{draw the ne,o,r screen here}
VSWip.;

DrawTools 3.1

DrawMain; { or Shado\O.On, if you want to use the shadow ecreen }

BASIC: Reminder: Uses the shadow screen: stand-alone programs only!
TOOLBOX("'DrawShadow)

rooLBOX(NShadowOff }

REM Draw new screen here

rooLBOX(NVBl'Iipa }

TOOLBOX (.... OrawMain

Merlin 16+
DrawShadow

_SbadowOff
;draw the new screen here
_VBlfipe

_DrawMain

7

DrawTools 3.1 8

3. Animation

3.1 What is Animation?

Animation is the illusion of motion created when a sequence of pictures is rapidly displayed. Each picture,
called a cell or frame, is a modified version of the picture before it. When each of these still frames is displayed
quickly, one after another, they give the illusion of smooth motion. A movie displays 24 frames per second, and at
60 or beyond the eye can't distinguish animation from real motion. Reasonable computer animation can be achieved
at speeds of even 4 frames per second.

To show a flag being raised, you would first start with a picture of flag pole. Then you would create a series of
pichlres, each with the flag a little farther up the pole. The final picture would be drawn with the flag at the top of
the pole. Each of these pictures of the flag and the flag pole is a frame. When you display these pictures rapidly and
in order, the flag appears to smoothly rise up the pole. This is the fundamental principle of animation.

3.2 Animation Examples: Dialog Ideas

To view some sample animation sequences, start PicEd and load the dialog.pies picture library included in the
PicEd folder. This file is an unpacked picture library created from the Dlog.Ideas320 file using the Ubrary Converter
utility. Once the file is loaded, try some of the following animation sequences.

NlIIll!l
1. Note Alert
2. Caution Alert
3. Stop Alert
4. Working GS
5. Swap Disks

Sequence
0,1,2,3,3,3,255,0
4,5,6,7,6,5,255,0
8,9,10,11,255,0
12,13,14,12,13,14,12,13,14,15,15,15 ,255 ,0
16,17,18,19,20,21,22,23,255,0

To try one of these animations:
1. Click on the ani ,button.
2. Click on the seq button.
3. Type in the picture sequence, one number at a time.
4. Click on the Go! button.
5. Type in the speed number.
6. To stop the playback, hold down the mouse button.

Try some experiments.

3.3 Colour Cycling

~
4
2
3
5
2

One of the simplest methods of performing animation is colour cycling. It is the process of changing RGB
colour words to make objects on the screen appear and disappear. Most paint programs for the liGS have some kind
of colour cycling feature.

To use colour cycling, you draw only one picture, but you paint different frames in different colours. With the
flag pole example, you could draw a series of flags up the flag pole, each in a different colour, the lowest flag in
colour I, the second lowest in colour 2, and so on. When you are finished, you have a flag pole full of coloured
flags (see Figure 2). If you change all of the colours except colour 1 to black, the only flag that is visible is the one
on the bottom of the flag pole. If you change colour 1 to black, and change colour 2 to the colour of the flag, the
second flag on the flag pole appeara. By cycling through the current palette, making one colour after another visible,

DrawTools 3.1 9

the flag appears to rise up the pole.

Figure 2: Fla~pole Example

mlfZ'lll~
CoIoo' 1 2 3 4

To do colour cycling in the current palette, all you need are two QuickDraw tools: GetColorEntry and
SetColorEntry. The first gives you the RGB colour word for a particular palette entry. The second lets you change
a colour in a specified position in a palette to a new colour. There is also a GetColorTable and SetColorTable that
lets you change whole palettes at a time. Here's an example of how you might write the flag animation:

Example: Colour Cycling of a flag pole with five flags.
Pascal:
procedure AnimateFlagPole;

begin

var OldColours I ColorTable;
FlagColour, LaetFlagOolour, i I integer;

GetColorTable(O, OldCo!ours);{ save the original colours
LaetFlagColour 1= 5; { used to eraae old flags}
for i ,= 1 to 5 do SetColorEntry{O, i, $000) J { erase all the flags
for i 1= 1 to 100 do begin{ one hundred times}

for FlagColour 1= 1 to 5 do begin{ for each flag colour }
SetColorEntry(O, LaetFlagColour, $OOO);{ Make the last flag invisible
SetColorEntry(O, FlagColour, $FFF); { draw the flag in white}
LaetFlagColour ,= FlagColour; { thie flag gete erased next}

end;
end,
SetColorTable(O, OldColours); { restore original colours}

end lAnimateFlagPole} 1

BASIC:
DIM OldColoure%(15)

PROC AnimateFlagPole
OldColoursL% = ADDR(OldColours%() I REM Get address of array
OldColoureH% =PEEK(202)
TOOLBOX (4, 15 I 0,
LastFlagColour% = 5

FOR i% = 1 'IO 5

OldColoureH%, OldColoureL%) t REM Save colours in the array
1 REM Used to erase old flags

TOOLBOX(4, 161 0, it, 0)

NEXT H
FOR H = 1 'IO 100

FOR FlagColour% = 1 TO 5
TOOLBOX(4, 16, O,LastFlagColour%, 0)
TOOLBOX(4, 161 0, FlagColour%, 4095)
LaetFlagColour% = FlagColour%

NEXT FlagColour%
NEXT i%

I REM Erase ail the flags

I REM One hWldred times
, REM For each flag colour
1 REM Make the last flag invisible
1 REM Draw the flag in white
, REM this flag gets erased next

DrawTools 3.1 10

TOOLBOX (4, 141 0, OldColoureH%, OldColoureL%) I REM Restore original colours
ENDPROC

You can do even more impressive colour cycling by changing an entire palette at a time. This is used by many
video games to create animation across the whole screen without having to do a lot of work. For example, the
pixels for water inay never be redrawn. Water looks like it's moving because the colours of the water pixels are
slowly changing. This is an impressive animation eftect that take very little effort on the part of a program.

DrawTools provides two tools for palettes that work like GetColorEntry and SetColorEntry. GetPalette gives
you the palette being used for a particular line on the screen. SetPalette, which we have seen before, lets you change
the current palette over a range of lines.

Example: Palette Cycling.
Pascal:
procedure CyclePalettesl

begin
var OldPalette, PalNum, Delay, i I integer;

OldPalette 1= GetPalette (1); { eave the original palette number
for i 1= 1 to 100 do begin! one hundred times}

for PalNum 1= 0 to 15 do begin! change the screen palette}
SetPalette(O, 199, PalNum) 1 { to each of the 16 palettes
for delay 1= 1 to 5 do WaitVB; { time delay = 1/6 second}

end;
end;
Setpalette (0, 199, OldPalette) 1 { restore the original palette}

end {CyclePalettea) 1

BASIC:
PROC CyclePalettee

ENDPROC

TOOLBOX("'GetPalette I 0, 1 1 OldPalette%} I REM eave the original palette
FOR 1% = 1 TO 100

FOR PalNtun% = 0 TO 15 I REM change the screen palette
lKX)L80X("'SetPalette 10, 199, Pallium%:)
FOR delay%" = 1 'TO 5

=LBOX(-lfaitVB) I REM time delay = 1/6.seccnd

NEXT delay%

NEXT PalNum%
NEXT i%
'IOOLBOX{ S.tP.l.tt. ,0, 199, OldPalette%) I REM restore the original palette

3.4 The Art of Animation: Draw, Erase and Redraw

Colour cycling is fine for some kinds of animation, but a program often needs to save many of the colours in
the palette for other uses. The more conventional approach to animation is to draw an object on the screen, erase it,
and then draw it again somewhere else. This cycle of draw, erase, draw, erase, is the technique used in most
computer games.

The one problem with draw/erase/redraw animation is flicker. 1his occurs when the object being animated can't
be redrawn fast enough. The eye sees the picture when it's there and when it isn't there, and this makes the object
you're animating appear to flicker. One of the easiest ways of reducing flicker is to use DrawTools' Wait VB tool
before you try to erase anything.

Example: The following procedure moves a white box across the screen by drawing it, erasing it, and then redrawing

DrawTools 3.1 11

it. WaitVB is used to keep the flicker low. To see the box flicker, try replacing the WaitVB loop with "for delay :=
I to 5000 do ;" and change the number of iterations.

Pascal:
procedure MoveABox;

var Box I rect, i, delay I integer;
begin

end;

SetRect(Box, 0, la, 30, 40); { the 30 x 30 box
SetSolidPenPat (15); { the box colour)
BetSolidBacKPat(0); { the erasing colour }
for i 1= 1 to 20 do begin{ 20 times}

OffeetRect{ Box, la, a};{ move the box 10 pixels to the right
PaintRect (Box) II draw it I
for delay ,= 1 to 5 do lIaitVll,{time delay = 1/6 second I

{ we just finished a WaitVBI
EraseRect (Box) I (erase the box without flicker }

end;

BASIC:
DIM Box%(e) I REM Space for a rectangle

PRee MoveABox
RPM I'm assuming BoxH% & BoxL% is the address of the box%" array.

'IOOLBOX(4, 74 I BmeRt, BoxL%, 0, 10, 30, 40} I REM create a 30 x 30 box
HCOWR = 15
BKCOWR = 0
FOR it = 1 TO 20 I REM 20 times

IfOOLBOX(4, 75 I BoxH%, BoxL%, 10, 0) I REM move the box 10 pixels to the right
TOOLBOX{4, 84 , BoxH%, BoxL%) ,REM draw it
FOR delay% = 1 TO 5

TOOLBOX (-II ai tVll) , REM time delay = 1/6 second
NEXT delay% .

'OCOLOOX(4, 85 I BoxH%", BoxL%) I REM erase the box without flicker!
END i%

ENDPROC

3.5 Bit-Mapped Pictures

Each time QuickDraw paints an object on the screen (like our box) it has to do a number of things:

a) Make sure the mOUse arrow isn't erased.
b) Make sure the object is actually on the screen.
c) Make sure the object is within the clipping & visible regions of the current window or grafport.
d) Calculate which colours to use with the pen pattern and pen mask.
e) Compute which pixels to change in the current pen mode & size.

All this is what makes QuickDraw so handy and powerful, but it also makes it slow, too slow except for the
simplest kinds of animation. After all, if we are drawing a space ship, we don't need spec"" pen modes, sizes,
patterns and the rest of those features. To draw a picture very quickly, DrawTools provides a s!",,:ial set of tools call
the drawing tools. There are 8 drawing tools: Draw, Draw48, DrawAt, Draw48At, DrawOn, Draw480n,
DrawOnAt and Draw4800At. The basic tool, Draw, draws a bit-mapped picture library picture (24 pixels wide
and 24 pixels high, the ones used with PicEd and the Library Converter). The other tools are variations 00 Draw:

DrawTools 3.1 12

the "48" tools draw 4 pictures at once (like you see in the double-sized window in PicEd); the "At" tools let you
specify the screen position to draw at; and the "On" tools let you draw matted pictures. We'll talk more about
pictures and mattes later. Because each of these tools is customised for a particular size and "pen mode", they draw
pichues many times faster than QuickDraw can.

Before we can use the drawing tools, we need to load a pictuire library from a disk with the LoadLibrary tool.
A pichue library is a set of 32 bit-mapped pichlres created with PicEd or the Library Converter utility. LoadLibrary
loads pichlre library from a disk and it gives you an "ID code" that you can use later on to refer to the library.
LoadLibmry has some special parameters that will be described later on when we talk about matting. There is also
an UnloadLibrary tool, but you normally don't need to use it.

You can only draw with one library at a time. To specify which Iibmry we want to draw with, we need to use
the SetLibral'y tool. There is also a GetLibrary tooltbat rehlms the ID code for the clJrrent library.

fOl LoadLibrary uses a GSIOS string lor the pathname: there is no direct way in BASIC to use GSIOS strings.
ILJ We can fake the LoadLibrary/SetLibrary calls with BLOAD. This only works with unpacked libraries.

Example: Loading a library in BASIC without LoadUbrary or SetUbrary.
BASIC:
REM Drawrools_Addr% is the direct page space you allocated when you started DraWl'oole.
DrawTools_Buffer = PEEK(DrawTools_Addr%+4) + PEEK(DrawTools_Addr%+5) * 256
POKE 202 to I REM In BASIC 5.0 I we what to load the whole library
BWAD "path name of picture library", DraWI'ools_Buffer, 9216

Example: The following procedure demonstrates how to load and display the pictures in an (unpacked) library. The
LoadUbrary tool requires a GSIOS string (a two-byte length followed by the string itself), so refer to your particular
language on how to define a GSIOS string.

Pascal:
procedure DumpOutLihrary(pathname I GSOSString);

begin

end;

var TheLibrary t integer I { ID code for the library }

TheLibrary 1= LoadLibrary(pathname, 0, O} I { load the library from disk
SetLibrary(TheLibrary }; { use this library to draw with}
for y 1= 0 to 3 do { 4 rows }

for x 1= 0 to 7 do { 8 pictures per row }
DrawAt(x * 32, Y * 32, x + y * 8); { draw picture # x+8y }

BASIC:
PROC DumJ;OutLihrary
REM Fake the LoadLibrary/SetLibrary as described above (or use Mical Macro & LINK) .

ENDPROC

FOR y% = 0 r.ro 3 I REM 4 rows
FOR x% = 0 TO 7 1 REM 8 pictures per row

SereenX% = x% * 32
ScreenY% = y% * 32
pieNum%: = x% + y%: * 8
TCOLEOX(~DrawAt 1 ScreenX%:, ScreenY%:, PieNum%: }

NEXT x%
NEXT y%

Example: You can animate pichlres with the drawing tools in the same way that we animated the box. If you create
a picture of a box using PicEd in pictIJre 0 of a library, and you leave picture I of the library blank (to erase with),
then YOIl can animate this box using the following procedure.

DrawTools 3.1

Pascal:
procedure MoveBoxInADrawTooleLibrary{ pathname I GSOS8tring);
conet

var
begin

end;

Box = 0; { box is picture zero}
Blank = l/{ blank picture i8 picture 1
if delay I integer; BoxLib t integer;

BoxLib 1= LoadLibrary(patlmame, 0, 0) J { load the pictures
SetLibrary(BoxLib); { draw with this eet)
for i 1= 1 to 29 do begin{ 29 times)

DrawAt{ i * 10,20, Box);{ draw a box}
for delay 1= 1 to 5 do WaitVB;{tirne delay = 1/6 second}
DrawA t (i * 10, 20, Blank) 1 { erase the box }

end;

BASIC:
PROC MoveBoxlnADraWTooleLibrary

Box%: = 0

ENDPROC

Blank% ~ 1

REM Load and eet the library
FOR 1% ~ 1 'ID 28

x% = i% * 10
TCOLBOX("'DrawAt I x%, 20, BoX%)

FOR de1ay% ~ 1 'ID 5
TOOLI3OX(-lfaitVB)

NEXT delay%
TCOLBOX("'Dr.",At : x%:, 20, Blank.%)

NEXT 1%

3.6 Caching with Library Buffers

13

DrawTools provides a caching mechanism that can reduce the swapping time when you change from one library
to another with SetLibrary. If you need the extra speed that caching provides, use the ExtendBuffers tool after
DrawStartUp. Now each time you use Set Library, the library will he loaded into a library buffer in bank O. If you
use SetLibrary to select a library which is already in a buffer, DrawTools will switch to the appropriate buffer
without reloading the library from main memory.

DrawTools can allocate up to 5 library buffers. Only the libraries you use the most will he cached; in order to
get the best performance from the caching mechanism, use the Resetnuffers tool when you are about to use a new
set of libraries. This clears the old libraries from the library buffers in preparation to receive a new set of libraries,
such as when a new level in a game is about to start.

You can pre-load the library buffers when they are clear by using SetLibrary once for each library you will he
using.

3.7 Mattes: Merging the Background with a Picture

Using DrawAt, we can create animated objects that move about the screen by drawing, erasing, and redrawing.
But these tools destroy anything they are drawn on. For instance, if the screen contains a picture of. a tree, and we
use DrawAt to place a picture of a man on top of it, we get a tree with a 24x24 rectangle in it and a man within the
rectangle. The picture is drawn "as is" overtop of the background. What we need is a way to combine the picture of
the man with the tree. We want the empty pixels about the man to act as if they were transparent.

DrawTools 3.1 14

MaIling is Ihe process of merging a piclure wilh whal is on the screen by using a special matte, or mask, which
indicates Ihe portions of Ihe pic lure which should be treated as transparent. If you have used QuickDraw II, you have
already seen mattes used. When you create a cursor, you creale a piclure of the cursor and then you make a mask to
indicate where Ihe screen pixels show through. The pen mask works in a similar way: pixels marked as white show
through.

Figure 3: Merging the Background with a Piclure

~ ~
Backgro,md MalteMask Picture Result

DrawTools also uses mattes to merge pictures with a backgrOlmd. This is done with the "on" drawing tools
(DrawOn, DrawOnAI, ...). Each of these tools requires a matte to immediately follow the picture you are Irying 10
draw. Creating a matte mask is easy. In PicEd there is a button named "mask". Wben you click on the button,
PicEd will create a matte for the current picture and place it in the following picture position. The effect is shown in
the window with Ihe red background. When the mask is made, each black pixel in the original picture is assumed to
be Iransparent. To view Ihe matte, edit il. Each white pixel represents a pixel Ihat will be laken from the
background, and each black pixel represent a pixel that will be taken from the proceeding picture. It looks rather like
a silhouette of the original picture.

If we want to make an entire library of matted pictures, there is even an easier way to create the malte masks.
We draw pictures in each of the even numbered library positions (0, 2, 4, ... , 30). Then we can tell LoadLibrary thaI
Ihe masks are missing and Ihal SelLibrary will have to generate alilhe masks in positions (1, 3, 5, ... , 31) for us.
The following procedure shows the pictures in this kind of library. Nole that the pictures will be drawn on top of
whalever was previously on the screen.

Example: Drawing the contenls of a piclure library with malted pictures
Pascal:
procedure DumpOutMattedLihrary(pathname : GSOSString);

var TheLibrary I integer 1 { ID code for the library
begin

TheLibraly 1= LoadLibrary(patlmame, 0, $4000} I { bit 14 = we'll need masksl }
SetLibrary(TheLibrary } I (uee this library to draw with
for y 1= 0 to 3 do{ 4 rowe)

for x 1= 0 to 7 do { 9 pictures per row}
if not odd(x) then{ Skip the masks @ 1,3, ...

DrawOnAt(x • 32, Y '* 32, x + y * 8) 1 { draw picture # x+8y }

BASIC:
PROC DumpOutMattedLibrary
REM Load and Bet the library
TCOLBOX("'GenAllMasks) I REM Generate matte masks for even-numbered pictures
FORy%~OT03

FORx%=OT07 STEP 2

Screenx% = x% * 32

DrawTools 3.1

NEXT y%
ENDPRQC

screeny% = y% * 32
PicNum% = x% + y% * B
'I'CX)LBOX(~DrawOnAt IScreenx%, Screeny%, picNum%)

NEXT x%

15

If we don't want every black pixel to be treated as transparent, we will have to create the masks by ourselves.
For instance, we may create a picture of a man with a black pixel for an eye. Create a matte mask using the mask
button, and then edit the matte and remove the white pixel where the eye is. Now the eye won't be treated as
transparent.

Now we can create pictures like we see in video games which move overtop of the backgrotmd. However,
erasing these pictures becomes a problem. We can't simply use a blank picture as we did before because the
backgrmmd isn't blank. To erase the pictures drawn with draw on, we need to replace the piece of the background
that lay under the picture. But when we use DrawOn, we've changed the background on the screen by adding our
DrawOn pictures.

The answer to this dilemma is to store the background in the shadow screen. DrawShadowand DrawMain
tools let you switch whenever you want between the shadow screen and the main screen. ShadowOff turns off the
shadow screen; you can still draw to it, but what you draw remains invisible lmtil you "wipe" it to the main screen.
ShadowOn turns the shadow screen on so that anything you draw will be copied to the main screen and become
visible.

Figure 4: The sb!l!!ow screen and !!!li!ll!l!ion

", " '" "" ,. "- The main screen holds the ... '" ... '" ,. '" '" ...
"'","",A""","'","'","","',,,

foregrotmd and background · . '" ", '" '" '" h · .. hI>" " " " ... '" · .. "","'",h,.."'","","'""",",,, · " ... " h " · .. " '" "' " ... " · '" ... " ... "", ... · .. ~: '" h h "h h · . " .;, ,. h " "

",," ,,'" h " " ... h h "
" " h h " " h """,,h h ". ... h "

hh" ,.,h ... :~
" h '" h ... h ;, h

",.""",h","","'""'","',,,",,,

The shadow screen holds an uncorrupted copy of the
backgrOlmd

Rather than get into the details of how the shadow screen works, here's how we get aronnd the erasing problem.
First, we put the background into both the shadow screen and the main screen at the same time. The easiest way to
do this is to use DrawShadow & ShadowOn and start drawing. Second, we use DrawMain and draw our matted
pictures. The copy of the background that is sitting in the shadow screen remains unchanged. Finally, to erase our
matted pictures, we use DrawShadow and draw empty matted pictures. Since all pixels are transparent in an empty
matted picture, the background is copied to the main screen and erases any picture that we drew previously. If it
sOlmds complicated, it is, but it's easier than trying to capture the pixels in the background each time we draw with
matted pictures.

Example:TIlis is the MoveABox procedure rewritten to move the box overtop of a background picture. It should
help you put things together:

Pascal:
procedure MoveMattedBoxInADrawToolsLibrary(patlmarne I GSOSstring);
conet Box = 0; { box is picture 0 (picture 1 will be the matte mask)

Blank = 21 { blank picture is picture 2 (picture 3 will be the matte mask)
var i, delay I integer; BoxLib I integer;

DrawTools 3.1

begin

end;

DrawShadow; { remember to specify the shadow screen in QDStartup
ShadowOD;
CLS{O);{ erase the shadow screen (and the main screen) }
{ Draw some stuff on the screen here - this will be in the background
BoxLib 1= LoadLibrary(patlmarne, 0, $4000) 1 { load the pictures}
SetLibrary (BoxLib) 1 { draw with this library }
for i 1= 1 to 28 do begin{ 28 times}

DrawMain; { switch to the main screen)
DrawOnAt{ i * 10, 20, Box} 1 { draw a box
for delay 1= 1 to 5 do WaitVB; {time delay = 1/6 second}
Drawahadow 1 { switch to the shadow Bcrn }

DrawODA t (i * 10 I 20 I Blank); { erase the box }
end;

3.8 Pixie Power: Automatic Animation

16

Up until now we've been looking at how to draw pictures in PicEd that we can animate and move around the
screen. You could do all the animation yourself using the drawing tools to play back pictures in a specific order and
erase them as appropriate. Animation involves not only pictures, but arranging them into sequences and moving the
pictures about the screen. DrawTools has a special data stmcture to help you do just that, and it's called a pixie. It's
sort of the software counterpart of a hardware sprite such have you may have seen on a Commodore 64.

A pixie is an animated object that can move arOlmd the screen. Pixies are very flexible. They can be matted or
unmatted. TIley can have a direction or stand still. They can temporarily become invisible and then reappear
somewhere else. They can use pictures from more than one library. In the DrawTools' game demo, the mother ship
and the bombs it was dropping were all pixies.

Each pixie consists of two parts: 1) a sequence of picture numbers and pixie commands; 2) a data record
describing the position and direction of motion. We have already seen examples of a picture sequence: we had to
type in a picture sequence to do the animation examples that we did at the start of the animation section. The size of
data record depends on what type of pixie you create: a simple, coarse, or fine pixie. The simple pixie is used to step
through the picture sequence: it doesn't actually draw or move anything. The coarse pixie is a 24x24 bit-mapped
picture that has a location and a direction. The fme pixie is similar to the coarse pixie, except that it can move with
greater precision. For the rest of this section, we'll be talking about fine pixies because they are the most versatile.
Most of what we'll discuss will more or less apply to the other two types.

The data stmcture for a fine pixie data record is already defined for you in Pascal if you are using the DrawTools
interface file supplied with your DrawTools disk.

Table 5: Fine Pixie Data Record (Pascal)

Type FinePixie = record

end;

XVectorLow, XPositionLow: integer;
XVectorHi, XPositionHi : integer;
YVectorLow, YPositionLow : integer;
YVectorHi, YPositionHi : integer;
index: byte;
status: byte;

DrawTools 3.1 17

Here is a description of each part of the record:
XPosition - this is current position of the fine pixie (0 .. 320, the same as the drawing tools use). If "hi" is the x
coordinate, and the "low" is in fractions of a coordinate. Normally, you witt want to leave the low's at zero.
YPosition - this is the current line number of the pixie (0 ... 199)
XVector - this is the speed of the x direction «0 is left, >0 is right).
YVector - this is the speed in the y direction «0 is up, >0 is down).
Index - this is the location of the next picture in the pixie sequence; set to 0 for the first.
Status - user-defined value; we'll get to later.

f01 BASIC: To create a fine pixie record, use the DIM statement or GET _MEM. For example, DIM
l.[J MyPixie%(9): You witt have to POKE the values into the record: the offsets for the different fields are listed

in the reference. You witt also need to use DIM or GET_MEM to create the sequences.

f01 For instance, XPositionHi = 100, XPositionLow = 0, YPositionHi = 50, YPositionLow = 0,
l.[J pixie is at (100, 50). If XVector and YVector are all zero, the pixie is standing stitt.

means the

A picture sequence is simply list of bytes with the picture numbers to draw. The index to the sequence is in the
data record.

Example: The following is an example of how to create a pixie of the swap disks animation that we saw in the first
section. It uses SetPixie to create a new pixie. The constants dVisible and dFinePixie are in the DrawTools
interface file and are used here just to make things easier to read. SetPixieSeq lets you select the sequence of pictures
that witt make up the pixie. There are also GetPixie and GetPixieSeq tools that return to you a pointer to the data
record or sequence for one of the pixies.

Pascal:
procedure SetUpDiekSwapPixie(Oialog_PlcB_Path I GSOSString);
type APictureSequence = array (0 •• 9] of byte;
var Pies I APictureSeqence;

DiskPixie I FinePixie;
DialogLib I integer;

begin

end;

Pica[O] 1= 16; { list of pictures}
Piee[l) 1= 17,Pice{2] 1= 18;pics[3] 1= 19; { in the animation}
Pice [4] ,~20,Pice[5] ,~2l,pice[6] ,~22,

Piee(7] 1= 23;Pics[8] 1= 255;Plca[9] 1= 0;
DialogLlb 1= LoadLibrary{Oialog_pics_Path, 0, 0) I { load the dialog pice}
setP!xie(O, dVieible+dFinePixie, @DiskPixie);{ pixie 0 visible & a fine pixie
SetP!xieSeq(O, DialogLib, @Pice};{ pixie ueee dialog. pice }
{ & the picture eequence }
with DiskPixie do begin

XPoeitionLow 1= O;XVectorLow 1= 0/! place it at (50,50) }
xPositionHi 1= 50;XVectorHi 1= a; { and don't move aroWldl
YPositionLow 1= O;YVectorLow 1= 0;
ypositionHi 1= 50;YVectorHi ,= a;
Index 1= 0; { the first picture is }
{ the firet in the array}

end;

Once a pixie is created, it is easy to animate it with Ihe AnimatePixie toot. Animate pixie moves the pixie (if
necessary) and then uses the drawing tools to draw the pixie. Note: it doesn't erase the pixie for you, but we don't
have to erase anything for this pixie because it isn't matted nor is it moving aronnd.

DrawTools 3.1

Example: How to animate a single non-matted tine pixie.
Pascal:
procedure AnimateDiekSwapPixie(Dialog_Pics_Path I GSOSString);

(- - - you can fill this in from the above example)

end;

DialcqLib 1= LoadLibrary{DlalQcPics_Path, 0, O}; (load the dialog pics
BetPixie(O, dVieible+dFinePixie, @DiekPixie),{ use pixie #0 }
SetPixieseq(OI DialogLib, @pice);{ pixie usee dialog.pice)
(--- Initialise the data record in here)
B. tLibrary (Dia!ogLib);
for i 1= 1 to 100 do begin

for delay 1= 1 to 5 do WaitVB;{time delay = 1/6 second}
AnimatePixie (0); {animate pixie no}

end;

3.9 I)ixie Commands

18

A pixie sequence C1I1I contain pixie commands. A command is a special instmction for the pixie, such as to
change the pixie's vector or to switch to a different library. We have already seen one pixie command: 255 is "end of
sequence" command and every sequence must end with it. The number following the end of sequence command is
the position in the sequence to loop back for the next picture. In our disk swapping animation, we are looping back
to position 0, the start of the sequence in order that the sequence will keep repeating over and over again.

There are eight command that you can use with pixies, and they are outlined as follows:

255 - End of Sequence (All Pixies)
Marks the end of a sequence; it's followed by the index for the sequence to loop to. It can also be used to to jump
forward in a sequence.

254 - Chan2e Library (Coarse or Fine)
Switches to a different library; it's followed by a logical library number (The second parameter in LoadLibrary).

253 - Change X Vector (Fine)
Changes XVectorLow & XVectorHi; it's followed by the new low and high values. ego 254, 0, 0, 2, 0 changes low
to 0 and high to 2.

252 - Change Y Vector (Fine)
This works the same way as Change X Vector.

251 - Change X & Y Vectors (Fine)
Changes X Vector then Change Y Vector, a total of 8 new bytes plus the command byte.

250 - Chan~e Vector (Coarse)
Changes the vector word for a coarse pixie.

249 - Chan~e X & YVectors Relative (Fine)
This command works like 251 except that it ADDS the new vector values to the old ones.
For example, you have a sequence of an aeroplane and you want to make the aeroplane bOlmce during the

sequence. There is no way to know the X & Y vector values, so you use 249, 0, 0, 0, 0, 0, 0, 1,0, <picture> ,
249,0,0,0,0,0,0,254,255, <picture>, 249, 0, 0, 0, 0, 0, 0, I, O. If the aeroplane Y vector is $0100 (dropping
one line at a time) when this sequence is used, the following will happen. The tlrst 249 causes the aeroplane Y

DrawTools 3.1 19

vector to increase by I so the plane drops 2 lines at a time. The second 249 changes the vector by -2 to O. The third
changes the vector back to one (the starting value). 'llie plane does a little vertical bounce whether its gaining
altitude, losing altitude, or flying straight.

248 - Change Status (Coarse or Fine)
The status field in the data record is for your own use. It works much like the RefCon values in things like

windows. 248 is followed by the byte that you want &ored in status. For instance, if you have a sequence of
someone jumping, you can start the sequence with a 248, I and at the peak of the jump you can use a 248, 2. Now,
to tell whether the player is jumping up or is starting to fall, all you have to do is check status to see if there is a I
or 2.

Example: The following example is how to enbed speed changes right inside of a sequence. It's a sequence of
someone jumping, where pictures I, 2 and 3 are to be repeat during the jump. Without the speed changes, the
sequence would be 1,2,3,255,0. But we want a nice looking jump where the jump starts fast (reduce the Y
coordinate by 2 each animation), slows when the peak of the jump is reached (reduce by I), and speeds up past the
peak (see Figure 6). Because all these speed changes are embedded in the sequence, all our program has to do is
check the pixie position to see when the jump is over.

Pascal:
Seq[O] ,= 253;Seq[1] ,= O;Seq[2] ,= O;Seq[3] ,= 254;Seq[4] ,= 255;

Seq [5] ,= 1;Seq[6] ,= 2;Seq[7] ,= 3;
Seq[S] ,= 1;Seq[9] ,= 2;Seq[lO] ,= 3;

Seq[ll] ,= 253;Seq[12] ,= O;Seq[13] ,= O;Seq[14] ,= 255;Seq[15] ,= 255;

Seq[16] ,= 1;
Seq[17] ,= 253;Seq[lS] ,= O;Seq[19] ,= O;Seq[20] ,= O;seq[21] ,= 0;

Seq[22] ,= 2;
Seq[23] ,= 253;Seq[24] ,= 0;Seq[25] ,= O;Seq[26] ,= 1;Seq[27] ,= 0;

Seq[2S] ,= 3;

Seq[29] ,= 253;Seq[30] ,= O;Seq[31] ,= 0;Seq[32] ,= 2;Seq[33] ,= 0;

Seq[34] ,= 1;Seq(35l ,= 2;Seq(36] ,=3;

Seq(37] ,= 255;Seq(3S] ,= 34;

Fh:ure 6: A T}llical Jumping Sequence

·1

·2

X
BASIC:
REM Assuming S"'LAddr is the address of the sequence
POKE Se<LAddr+O, 253

+1

+2

POKE Se<LAddr+1, o I POKE Se<;LAddr+2, OtPOKE Se<;LMdr+3, 2541POlCE Se<LAddr+4, 255
POKE Se<LAddr+5, llPOKE S~Addr+6, 21POKE S~Addr+7, 3
POKE Se<;LAddr+8, llPOKE Se<{...Addr+9, 21POKE Se<LMdr+10, 3

DrawTools 3.1

POKE Seq_Addr+ 11, 253

POKE Se<LAddr+12, QIPOKE S~Addr+13, DIPOKE Se<LAddr+14, 2551POKE Se<;LAddr+15, 255

POKE Se<LAddr+16, 1

POKE Se(L}\ddr+17, 253

POKE Se<LAddr+18, O:POKE Se<LAddr+19, O,POKE Se<LAddr+20, QIPOKE Se<LAddr+21, 0

POKE Se<;LAddr+22, 2

POKE Se<L...Addr+23, 253

POKE

POKE

POKE

POKE

POKE

POKE

Se<LAddr+24,

Se<LAddr+20,

Setl.-Addr+29 ,
Se<;LAddr+30,

Se<LAddr+34 ,
Se<t...Addr+37,

Q,POKE Se<LAddr+25, QIPOKE Se<LAddr+26, llPOKE S~Addr+27, 0

3

253
D,roKE Se<LAddr+31, O,J?OKE Se<LAddr+32, 2:POKE Se<LAddr+33, 0

11l?OKE S~Addr+35, 2d?OKE Se<LAddr+36, 3
2551POKE Se<;LAddr+38, 34

253 1 start jump with a new Y vector

20

Merlin 16+:
db
adrl
db

$FFFEOOOO (-2) move up 2 lines for each picture displayed
1, 2, 3, 1 ,2 ,3 display six pictures, moving up 2 lines each time

db
adrl
db

253 nearing top of jump; start slowing down
$FFFFOOOO (-l) move up one line next time

db
adrl
db
db
adrl
db
db
adrl
db
db

1

253

$00000000
2

253 1 starting to falll
$01000000

3

253

$02000000
1, 2, 3
255, 34

Example: Jumping with the above pixie sequence.
Pascal:
DoneJumping .1= falae;
repeat

AnimateP!xi. (pixieNum);

display picture, moving up one line
we're at the top of the jump; hover for one picture
don't move for next picture
picture

(+l) move down one line each picture
picture
fall at full speed for ae long ae the seq. continues
(+2) down two lines each picture
pictures
end of sequence - keep repeat the last 1,2,3

if HaeLandedOnSomething{ PixieRec.XVectorHi, PixieRec.YVectorHi) then begin
pixieRec.YVectorHi 1= 0;
DoneJlUllping ,= true;

end;
until DoneJurrrping;

BASIC:
DoneJumping I = FAISE

REPEAT

TOOLBOX("'AnimatePixie I PixieNum%)

XVectorHi% = PEEK(Pixie_Addr+6} + PEEK(Pixie_Addr+7) * 256
YVectorHi% = PEEK(Pixie_Addr+14) + PEEK(Pixie_Addr+15) * 256
IF HaeLandedOnSomething[XVectorHi%, YVectorHi% 1 THEN BEGIN

POKE Pixie_Addr+14, 0 I REM Y vector to 0
POKE Pixie~dr+15, 0
DoneJumping I = TRUE

ENDIF

DrawTools 3.1 21

UNTIL OoneJtunping I = TRUE

3.10 Managing Multiple Pixies

We know know enough to create an animated figure that can move abont the screen, even overtop of a
background. The final topic here is animating multiple pixies at once, espedally about how to be careful when
erasing pixies.

Throughout our pixie examples we've been using pixie 0 to do our animation. DrawTools supports up to 16
pixies at once (0 ... 15). You can select anyone of Utese pixies for your animation. However, there may be
accaisions when you don't care which number you use. You could make a game where new bad guys can appear at
random. At any Jloint in the game, you may not be sure of how many bad guys you have already on the screen, nor
do you know which pixies are being used. To make things like this a little easier, DrawTools provides two tools
called NewPixie and ClearPixie. NewPixie returns the number of the first pixie that is not being used, starting
from 15 and working down towards O. ClearPixie lets you free up a pixie that you aren't going to use anymore.

If you temporarily want to suspend a pixie without using ClearPixie to free up it's data record and sequence
information, there is DisablePixie tool. When a pixie is disabled, it will not be drawn or moved, but it still
exists and can be "started up" again by using EnablePixie. A pixie may also be rendered invisble by using
HidePixie. A hidden pixie will move arolmd the screen, but it won't be drawn. It appears again with a
ShowPixie call. In the demo game included on the DrawTools disk, a bomb is disabled when it hits the bottom of
the screen and it remains disabled until the Mother Ship is ready to drop it again. The Mother Ship is made·
invisible at one point in the game by using HidePixie.

Using several pixies is easy with the Animate command. It works the same way as AnimatePixie, but it
animates all the enabled pixies at once, and automatically calls SetLibrary when necessary. Animate works from
pixie 15 down to pixie O. If you have two matted pixies overlapping, the pixie with the lower number will be
drawn on top of the other one. Keep this in mind if the order of drawing is important. If you want a pixie airplane
to fly behind a pixie cloud, the cloud must have a lower pixie number.

The most difficult aspect of working with multiple pixies is erasing. Like AnimatePixie, Animate doesn't do
any erasing. This is for two very good reasons. First, Animate can't tell which picture is blank, or in what library
it is in, to use for erasing. Secondly, when you are animating more Utan one pixie at a time and they overlap each
other, the order of erasing. is very important. All the pixies must be erased before Utey are animated since
overlapping pixies will interfere with each other. Some pixies may not even need erasing, such as non-matted pixies
with wide a wide border of pixels that squashes old pixels as it moves slowly arcoss Ute screen (as in AniDemo).

However, there are two tools to make erasing matted pixies easy. ErasePixie erases a matted pixie by
copying the background on top of the pixie: this works with both coarse and fine matted pixies (Utat are not disabled,
of course).

Example: EraseAlIPixies will erase all Utat matted pixies. The main loop of a simple arcade game would look
someUting like this:

Pascal:
Done 1= falee;
repeat

EraseA1IPixie",
{ move the pixies }
AnimateJ

tmtil Done;

BASIC:
Demel = FALSE

REPEAT

DrawTools 3.1

'IOOLBOX(.-.BraseAll Pixi es
REM move the pixies
TOOLBOX{--Animate)

UNTIL Done I = TRUE

22

DrawTools 3.1 23

4. Other Functions

4.1 Random Number Functions

DrawTools has three convenient random number tools. These all use QuickDraw II's Random, which returns a
random integer. RND returns a random integer between I and the another number, like BASIC's RND function.
Odds is a boolean function that is tme the given percentage of the time. NormalRND is a special funtion that
returns a normally distributed (bell curved) number between I and another number.

fOl You can use SetRandSeed to set the "seed" for DrawTools' functions as well as Random. (The seed
LCJ determines which random numbers will appear. If you set the seed to a certain the number, the random

numbers retumed by Random appear in the same order.).

Example: Suppose your are writing an adventure game. The player could fmd a treasure chest, and the chest may be
booby-trapped to explode 30% of the time. If the chest doesn't explode, the player gets 10 to 15 pieces of gold.
Y 011 could program it like this:

Pascal:
if Odd. (30) then

ExplodeCheat
else

GoldPiecee 1= 9 + RND (6) J

BASIC:
TCXJLBOX(... Odde I 0, 30; Result%:)

IF Result%: <> 0 THEN GOSUB ExplooeChest

IF Result%: = 0 THEN BEGIN
TOOLBOX(NRND 10, 6; Result%:) I REM or use BASIC/s RND
GoldPiecee% = 9 + Result%:

ENDIF

Example: A player in your game could also pick lip a shovel lying abandoned in a corridor, and you want the shovel
to break after an average of 20 uses. If ShovelUses is a variable with the number of goo\! uses left in the player's
shovel, you could write this:

Pascal: ShovelUBeB .~ NormalRND(40);

BASIC: TOOLBOX(98, 101. 0, 40; ShovelUBeB%)

With NormaIRND, ShovelUses will usually have a value near 20 (half way between 1 and 40). However, there is a
small chance the the shovel could have as many as 40 uses (a super-shovel) or as few as 1 use (a real "lemon").

4.2 Reading the Joystick

There are 3 tools for reading a joystick on your IIGS. To test the joystick buttons there are two tools: Get Fire
and StillFiring. StillFiring is the easiest to use; it is 0 if the joystick buttons are down, and greater than 0 if they
are up. GetFire is only greater than 0 when a button is first down. If a button is held down, GetFire will be 0 until
the button is released and pressed again. The actual number returned by these tools is a sum: button 0 has a value
of I, button I has a value of 2, and both buttons have a value 1 + 2 ~ 3.

GetJoy will determine the position of the joystick, either horizontally or vertically. GetJoy(O,O) returns the
horizontal position: a value <0 if the joystick is held to the left, 0 if it's in the center, or >0 if its held to the right.

DrawTools 3.1

GeUoy(O,I) is <0 for up, 0 for centered, and >0 for down.

Example: Using GeUoy and StillFiring in a game.
Pascal:

if OnALadder then
VerticalDir 1= GetJoy(O,l);

elee
HorDir 1= GetJoy{O,O);

if BtillFiring(O) > 0 then FireGun;

BASIC:
IF OnALadderl THEN BEGIN

TCOLBOX{"GetJoy I 0, 0, 1; VertDir%)

ELSE BEGIN
TCOLBOX("",aetJoy I 0, 0, 0; HorDir%)

ENDIF
TCOLBQX(.... etillPiring I 0, 0; Buttone%)

IF Buttone%:) 0 THEN GOSUB FireGtul

4.3 Game and Network Drivers

24

The newest version of DrawTools will let these 3 tools work with devices other than a joystick provided you
have a game driver. A game driver in DrawTools operates a substitute device for a joystick, like the keyboard or a
trackball. Up to 4 game drivers can be used at one time. (For more information on how game drivers work, consult
Appendix D of the reference.)

Three sample game driver is included in the DT.Drivers folder on the DrawTools' disk:

J oystick.Dryr - simply operates the IlGS joystick using GeUoy, GetFire & StillFiring
Keypad.Dryr - simulates a joystick on the IlGS keyboard (with the Event Manager's GetNextEvent)

• keys 1...9 specify your direction
• 0, -, +, * are fire buttons 0, 1,2, and 3 respectively
• . allows you to change your speed (-2,0,+2) or (-1,0,+ I)

Keypad.Dryr - simulates a joystick on the IIGS keyboard (with the Event Manager's GetNextEvent)
• keys y,u,i,hj,k,b,n,m specify your direction
• space,a,s,d are fire buttons 0, I, 2, and 3 respectively
• f allows you to change your speed (-2,0,+2) or (-1,0,+ I)

Not all languages support the system loader directly: to load a driver, you can use LoadDriyer. To start the
driver, use the DrawTools' SetGameDriYer tool.

Example: Loading and starting a game driver (as device #1).

Pascal:
Driverptr 1= LoadDriver{ DriverPath);
SetaamaDriver(1, driverPtr };

BASIC:
REM LoadDriver requires a Paecal string.
TCOLBOX("'LoadDriver I 0, 0, PathH%, PathL%; DriverptrL%, DriverptrH%}
'IOOLBOX(.... SetOameDriverl 1, Driver?trH%, DriverptrL%)

Now whenever YOII use GeUoy, GetFire or StillFiring with a I (not 0) as the first parameter, DrawTools' will
lise the new device in place of a joystick.

DrawTools 3.1 25

There is also a second kind of driver you can install, a net driver, that keep you inlOrmed of devices operating on
other llGS's across a computer network or a modem.

Example: You are writing a Tetris"! clone to work with 2 players on a network. The object of the game is to he the
player who survives the longest. What we need to do is:

(I) use Send Network to synchronize the start of the game on two different computers
(2) use SendNetwork to lind out who "died" tirst.

Pascal:
Conet AbortGarne = 9;

GameAborted = 1;
ReadyToGo = 161

Noand = 0;
Var Qnd I integer 1

Data I integer J

begin {main program}
{ do any initialization
repeat

Crud ,= ReadyToGo /

SendNetwork(Ond, Data} 1
if Crud <> Ready'I'oGo then Qnd ,= NoQnd/

until and = ReadyToGo;

{SendNetwork code to a1xJrt a game}
(S.N. code for someone aborting a game)
{define our own code to signal}
{ that we're ready to begin playing}
(s. N code for no carmand}

{ SendNetwork cormnand \rord
(S.N. data word)

{signal the other 1IGS that}
{ we are ready }
{ check the network }
{ignore everything unless other lIGS}
{ is ready, too}

{ both IIGS' a will only get here by both sending "ReadyToGo" over the }
{network. This process ia ecmetimee called llhandehakingll }
ImDead 1= false;
repeat

{ do the Tetrie stuff in here)
if ImDead then

and. 1 = AbortGame 1

else
and 1= Noand.;

BendNetwork(and, Data);
until ImDead or (Qnd = GameAborted) ;
if IrnDead then

writeLn('¥ou lost to the other player.')
else

writeLn('You wonll'};

4.4 Printing Tools

if player "died"/loet }
inform other GS that we lost first

else just check the network }

done if dead or other player dead

For assembly language programs, these are a simple set of tools for displaying Pascal strings and integers on
the super hi-res screen. Several of the printing tools have a mode word that comes after the rest of the parameters:
with this mode word, you can specify whether you want a carriage return, the rest of the line to he cleared, or if you
want to tab over to a new column.

Example: Printing in assembly language.
Merlin 16+:

_ Ready2Print 1 in any new grafport, use _Ready2Print

DrawTools 3.1

Stringl

String2

_Home
-Print ffStringl;#O
-PrintInt #$1234;#$8000
-Print #String2;#$8000

str 'The number is
str I All done.'

Output:
The number is 4660

All done.

4.5 Interrupt Tasks

26

home the cursor to top of screen
display Pascal string Stringl
display value of $1234 & do a C/R
display String2 and do a C/R

In Super-Hi-Res graphics mode, the computer can be interrupted when a certain line is about to be drawn by the
monitor and perform some quick task. By using interrupts, you can, for instance, have several different border
colours, or can cause different sets of palettes to be available (512 colours or more instead of 256). Each task has a
task header, which, strangely enough, need not be at the head of the task at aU. A task could have more than one
header, one for each line which is to invoke the task. Needless to say, don't touch the header if the task has been
added. Once you've defined (and, hopefhUy, debugged before hand) your tasks, enable the intemlpts
(EnableSCBlnts), add the tasks (SetSCBlnt), and start the execution of the tasks (ResnmeSCBInts).

Example: How to put 512 colours on the screen instead of only 256.
To do this, we need two sets of 16 palettes: one for the top half of the screen, and one for the bottom half. We can
use the interrupt tools to switch the palettes around. Once _ResumeSCBlnts is used, the palettes will be swapped
"in the background", and the main program can do other things.

Merlin 16+:
.... Snabl.SCBlncs #-1
-S.tSCBIne #Line99Header
-a.tSCBInt ffLine199Header
_ReeumeSCBlnte

Line99Header adrl 0

dw 99

dw $D44D
adrl SWapPalettee

Line199Header adrl 0

SWapPalettes

dw 199
dw $D44D
adrl SWapPalettee

phd
phb

* swapI in and out, the 16 palettes here
p1b
pld
rt1

; reserved
;the line this header applies to
,signature word
;invoke swap palettes on line 99

;invoke again at 199
lour interrupt task

DrawTools 3.1 27

406 Scolling the Screen

The IIGS is too slow to scroll a screen quickly enough without ugly, slanting jaggies appearing as different
portions of the screen are at different stages of scrolling. DrawTools has a couple of screen scrolling tools to shin
the screen contents and fill the void created with a picture. To scroll faster, the screen is divided up into small
blocks: if two adjacent blocks look the same, they are len alone; if they differ, they are scrolled. The result is that it
appears that the whole screen is scrolling, but only the portions that need to be moved are moved.

Figure 7: A Scrolling Block

Check Byte - I I

Each block is four bytes wide, and eight bytes high; on the screen, that's up to 40 blocks across, 25 blocks
down. The upper-len byte in a block is called the check byte. If the check bytes of two adjacent blocks match, the
blocks are assumed identical and no scrolling takes place. Obviously, not every picture can be scrolled using this
method. Pictures must be carefully constructed, making sure the check bytes differ whenever a block differs from a
neighbour. By this method, and clever art work, a picture can be made to look smooth and natural, and still scroll
very quickly.

rc51 You can make two check bytes look the same but be treated as differing by using a pixel whose colour is
lLJ equal to another (eg. two greens (#1,112) of the same shade; one check byte can use green #1, and the other

green #2 - they look the same, but they are actually different byte values).

The scroll tools use a scroll record, containing a description of the area of the screen t~ scroll, and of the picture
to be scrolled in. Scrolling may extend between any two screen lines, provided that the range is composed of
complete blocks (8 lines each). The scroll record parameter for width allows any rectangular picture to be scrolled
onto the screen. A screen wide picture has a width of 160; DrawTools pictures have a width of 12.

407 Other Tools

DrawTools hils a variety of other tools that may be useful in many programs .

• the work cursor, a pair of rotating gears, an alternative to the watch cursor.
o HLoad and HSave, to quickly and easily load files to handles and vice versa.
o a bar graph dmwer
• a tool that let's assembly language progmms call certain tools at faster speeds
o GetMHz returns the speed of the GS to the nearest MHz
o a tool to print windows or the screen on your printer

Example: How to use the work cursor.
Pascal:

WorkCursor2 (6); (animate the work cursor every l/lOth second)
for i 1= 1 to 20000 do begin {StillWbrking calls}

DrawTools 3.1

j ,= j + 1;

Still'Horking'1
end;

InitCUrsor;

BASIC:
TCOLBOX{ WorkCursor2 I 6)

FOR i% = 1 TO 20000
j% = j% + 1

TOOLBOX (NStilllforking
NEXT it
TOOLBOX (4, 202)

Merlin 16+:
"'WorkCur&or2 #6
LDA #20000
STA i

loop INC j
_Stil1Working
DEC i
ENE loop

_InitCUreor

28

Example: Drawing a packed super hi-res screen (filetype ClfOOOI). This format is used by 8116 Paint"l Screen
Pictures and DreamGraphixT>' PackBytes 16/256. For other programs, save the picture as an lmpacked screen and use
Lib.Converter 1.2 to convert the picture.

TML/Complete Pascal:
P2GSString('Mypic', pathstr);
PicHandle 1= HLoad(pathstr, $Cl);
SetBaokground2 (PicHandle, 0);

ORCA/Pascal:
PathStr.eize 1= length{'MyPic');
PathStr.theString 1= 'MyPic';
PicHandle ,= HLoad (pathBtr, $Cl) 1

SetSaokground2 (picHandle, 0) I

BASIC:
REM Basic doesn't support GS/os strings directly
REM Use GBT_MEM to get 32768 bytes, and load the picture with BWAD.
TOOLBOX ("'SetBaokground2 I PicHt, PicL%, 0)

Merlin 16+:
PathStr etrl 'Mypic'

-BLoad #PathStr; #$Cl

_SetBaokground2 1 handle is still on the stack

DrawTools 3.1 29

II. Reference

Introduction

This is section explains the layout of rhe reference section, and defines some of the terms used. For a more
general introduction to DrawTools, please read DrawTools Introduction manual.

Layout of Tool Entries

DrawTools provides over 100 tools. For convenience, these tools are divided up into different categories by use:

Housekeeping Tools, Low-level DrawTools, Drawing Tools, Library Management Tools, Animation Tools,
Screen Tools, Scrolling Tools, Palette and Colour Tools, SCB Intemlpt Tools, Printing Tools, Driver Tools
and Miscellaneous Tools.

Each individual tool is described in Ule following format:

Draw Version ($0462)
Returns the version number of DrawTools.
Examples: int := DrawVersion;

TOOLBOX(98, 4 : 0; int%)
Parameters: int (word) - the version, ie. $030 I
Errors: none

Definitions of Terms

The 1001 name and IIl1mber.
A descriplioll of ils lISe.
An example in Pascal & BASIC.
(BASIC: Inelude O'sfor each reslIII word!)
A descriplion of each parameter.
A descriplion of eallY en'O/'s it lIIay relllrll.

Here's an explaination of some of the terms you may encOlmter:
Absolute Screen Position: A pixel number, 0 .. .31999; ASP = (x 12) + Y * 160.

Pixel 0
Pixel 160

Pixel 159 (159, 0)
J

Pixel 31999 (319,199)

Booleans & BASIC: Treat !he booleans as an integer: 0 means false, and anything else is tme.
Bound lines: Bound lines are used to specify a range of screen lines. In DrawTools, bound lines need not be in
ascending order.
Colour word: An RGB colour word of the form $ORGB, where R,G,B are the amounts of red, green & blue.
Current Drawing Screen: Some tools will work with either the shadow screen or main screen, whichever is
active.
Library buffer: a 9K area in back 0 where recently used libraries are kept.
Main Screen: the slow drawing area in back $EI, used by most applications.
Nil pointers & BASIC: use zeroes.
Shadow Screen: the fast drawing area in bank $01.

DrawTools 3.1 30

Housekeeping Tools

These are the standard tools in every toolset.

DrawBootinit ($0162)
Should never be called by an application: does nothing.
Examples: should never be called.
Parameters: none
Errors : none

DrawStartUp ($0262)
Starts up DrawTools for use by an application. It must be made before any other DrawTools call. It does the
following:

* Searches for the special QuickDraw locations
* Saves user ID with auxiliary type $F (used for all memory allocation, including HLoad's & LoadLibrary's)
* Allocates one library buffer (about 9K in bank 0)

Examples :

Parameters:

Errors:

DrawStartUp(dpage, MMID)
TOOLBOX(98, 2: dpage%, MMID%)
dpage (word) - address of direct page workspace
MMID (word) - memory manager ID of your application
none

DrawShutDown ($0362)
Shuts down DrawTools when an application quits. This routine does the following:

* Ensures the system intemlpt manager is in its nomw state
* Deallocates all memory used (including HLoaded hancUes & picture libraries)
* Shuts down the net driver, if one is installed
* Restores shadowing to its original state

Examples :

Parameters :
Errors :

DrawShutDown;
TOOLBOX(98, 3)
none
none

DrawYersion ($0462)
Retnms the version number of DrawTools.
Examples: int:= DrawVersion;

TOOLBOX(98, 4 : 0; int%)
Parameters: int (word) - containing $0301, meaning version 3.1
Errors: none

DrawTools 3.1

DrawRese! ($0562)
Resets DrawTools; disables seB interrupts. This tool must not be used by an application.
Examples: should never be called
Parameters: none
Errors: none

DrawS!.!us ($0662)
Indicates whether DrawTools is active.
Examples: bool := DrawStatus;

TOOLBOX(98, 6 : 0; bool%)
Parameters: bool (word) - TRUE if DrawTools has been started up.
Errors: none

31

DrawTools 3.1 32

Low-Leve1Tools

These are tools for changing DrawTools' parameters and/or performance.

ExlendBuffers ($4A62)
Allocates as many library buffers as possible. Use this to reduce the time it takes to switch between picture libraries
in graphic intensive programs (like games).
Examples : ExtendBuffers;

Parameters:
Errors:

TOOLBOX(98, 74)
none
$6209 - not enough bank 0 memory for another buffer
$620A - already have maximum number allocated

ResetBuffers ($7062)
Clears the library buffers. The library buffers act as a caching mechanism for libraries: ResetBuffers clears the cache
memory. Use this when you are going to using a new set of libraries. For example, when you begin a new level in
a game, ResetBuffers will let you accesS new level libraries more efficiently.
Examples: ResetBuffers;

TOOLBOX(98, 112)
Parameters: none
Errors: none

DrawPos ($OB62)
Returns the absolute screen position for the next bit-mapped picture call.
Examples: int := DrawPos;

TOOLBOX(98, 11 : 0; int%)
Parameters: int (word) - 0 ... 31999
Errors: none

SetDrawPos ($OC62)
Sets the absolute screen position for the next bit-mapped picture opemtion.

Examples :

Parameters :
Errors :

SetDrawPos(int);
TOOLBOX(98, 12 : int%)
int% (word) -0 ... 31999
$62FF - the position is off the screen

DrawPage ($OD62)
Returns the location of the buffer for the current picture library.
Examples: int% = DrawPage;

TOOLBOX(98, 13 : 0; int%)
Pammeters : int (word) - the bank 0 location of the active set of pictures
Errors: none

DrawTools 3.1

SetDrawPage ($OE62)
Sets the location of the current picture buffer.
Examples: SetDrawPage (locn);

TOOLBOX(98, 14: locn%)
Parameters: locn (word) - the bank 0 location of the active set of pictures
Errors: none

DrawMain ($OF62)

33

Directs DrawTools to use the main screen (bank $EI). The current grafport is also forced to the main screen.
Examples: DrawMain;

TOOLBOX(98, 15)
Parameters: none
Errors: none

DrawShadow ($1062)
Directs DrawTools to use the shadow screen (bank $01). The current grafport is forced to the shadow screen instead
of the main screen. Micol Advanced BASIC's shen interferes with this command, but it will work in stand-alone
applications.
Examples: DrawShadow;

TOOLBOX(98, 16)
Parameters: none
Errors: none

DrawTools 3.1

Drawing Tools

These tools draw bit-mapped pictures from picture libraries, or produce masks
for matted bit-mapped pictures, without any animation. If you are using pixies,

see the animation tools.

Draw ($0962)
Draws a 24x24 bit-mapped picture at the current screen position and advance to the right.
Examples: Draw(pic);

TOOLBOX(98, 9 : pic%)
Parameters: pic (word) - picture in the current library (0 ... 31)
Errors: none

Draw48 ($OA62)
Draws a 48x48 bit-mapped picture at the current screen position and advances to the right.
Examples: Draw48(pic);

TOOLBOX(98, 10 : pic%)
Parameters: pic (word) - picture in the current library (0;.28)
Errors: none

DrawAt ($1462)
Draws a 24x24 bit-mapped picture at the specified screen position and advances to the right.
Examples: DrawAt(xco, yco, pic);

TOOLBOX(98, 20: xco%, yco%, pic%)
Parameters: 'xco (word) - x-coordinate (0 .. 319)

yco (word) - y-coordinate (0 .. .199)
pic (word) - picture in the current library (0 .. 31)

Errors: none (if bad coordinates are used, the picture is drawn at the upper-left <iOmer)

Draw48A! ($1562)
Draws a 48x48 bit-mapped picture at the specified screen position and advances to the right.
Examples: Draw48At(xco, yco, pic);

TOOLBOX(98, 21 : xco%, yco%, pic%)
Parameters: xco (word) - x-coordinate (0 .. 319)

yco (word) - y-coordinate (0 .. .199)
pic (word) - picture in the current library (0 .. 28)

Errors: none (if bad coordinates are used, the picture is drawn at the upper-left corner)

DrawOn ($2262)

34

Draws a matted 24x24 bit-mapped picture at the current screen position and advances one position to the right.
Examples: DrawOn(pic);

TOOLBOX(98, 34 : pic%)
Parameters: pic (word) - picture in the current library (0 .. 30)
Errors: none

DrawTools 3.1

Draw480n ($2362)
Draws a matted 48x48 bit-mapped picture at the current screen position and advances to the right.
Examples: Draw480n(pic);

TOOLBOX(98, 35 : pic%)
Parameters: pic (word) - picture in the current library (0 .. 24)
Errors: none

DrawOnAI ($2462)
Draws a matted 24x24 bit-mapped picture at the specified screen position and advances to the right.
Examples: DrawOnAt(xco, yco, pic);

TOOLBOX(98, 36: xco%, yco%, pic%)
Parameters: xco (word) - x-{X){)rdinate (0 .. 319)

yco (word) - y-coordinate (0 ... 199)
pic (word) - picture in the current library (0 .. 30)

Errors: none (if bad coordinates are used, the picture is drawn at the upper-left corner)

Draw480nAt ($2562)
Draws a matted 48x48 bit-mapped picture at the specified screen position and advances to the right.
Examples: Draw480nAt(xco, yco, pic);

TOOLBOX(48, 37 : xco%, yco%, pic%)
Parameters: xco (word) - x-{X){)rdinate (0 .. 319)

yco (word) - y-coordinate (0 ... 199)
pic (word) - picture in the current library (0 .. 24)

Errors: none (if bad coordinates are used, the picture is drawn at the upper-left corner)

GenMask ($2162)
Generates a matting mask for the specified picture and stores it in the next picture position.
Examples: GenMask(pic);

TOOLBOX(48, 33 : pic%)
Parameters: pic (word) - picture in the current library to make a mask for (0 .. 30)
Errors: none

Gel AllMasks ($2662)

35

Generates a matting mask for every even-numbered picture in the current picture buffer, storing each mask in the
following odd-numbered picture position.
Examples: GenAllMasks;

TOOLBOX(48, 38)
Parameters: none
Errors: none

DrawTools 3.1 36

SetBackgrollndt ($39621
Draws a packed super hi-res screen (filetype PNTI$OOOO) on the current drawing screen. The handle is left unlocked.
Examples: SeiBackgrOlUld(Background);

TOOLBOX(98, 57: BackgroundH%, BackgroundL%)
Parameters: BackgroundHandle (long) - handle to packed picture
Errors: memory manager errors
t See SetBackround2.

WipeOnt ($55621
Wipes a 24x24 block of pixels from the shadow screen to the main screen at the current drawing position.
Shadowing must be enabled.
Examples: WipeOn;

TOOLBOX(98, 85)
Parameters: none
Errors: none
t For use with pixies, see ErasePixie and EraseAIIPixies.

SetBackgronnd2 ($6F62)
Draws a packed super hi-res screen (fiIe1ype PNT/$OOOO) on the current drawing screen. You can create this kind of
picture by packing a super hi-res screen with PackBytes, or using one of several IIGS graphics conversion utilities
that are available, or by saving an 8116-Paint™ picture as a screen. The handle is left unlocked.
Examples: SeiBaekground2(Background, Flags);

TOOLBOX(98, III : BackgroundH%, BackgroundL%, Flags%)
Parameters: BackgrOlUld (long) - handle to the packed screen

Flags (word) - list of options:
o -normal (like SetBackground)
I - pixels and SeBs only (no palettes) for QuickWipe or VBWipe
2 - ready to fade in with QuickFadeln or rnerFadelo

Errors: memory manager errors

DrawTools 3.1

Library Management Tools

Tools used in loading and using picture libraries.

LoadLibrary ($2862)
Retrieves a DrawTools picture library from the disk and returns its library ID number.
Examples: UbID := LoadUbrary(path, SeqUbNum, packed);

TOOLBOX(48, 43 : 0, PathH%, PathL%, SeqLibNum%, Packed% ; LibID%)
Parameters: path (long) - GS/OS path name pointer

SeqLibNum (word) -logical number for pixie sequence commands (else just 0)
Packed (word) - bit 15 - TRUE if the library is packed with PackBytes

- bit 14 - TRUE if GenAlIMasks should be called before library is used
UbID (word) - the ID number for the library

Errors: $6201 - too many libraries loaded (current limit is 24)
$6202 - SC<ILibNum is out of range
GS/OS and Memory Manager errors

UnloadLibrary ($2E62)

37

Deallocates a library loaded with LoadLibrary. Normally, DrawShutDown automatically unloads all libraries.
However, this tool allows you to manually discard a library you no longer need without shutting down DrawTools.
Examples: UnloadUbrary (UbID);

TOOLBOX(48, 46 : LibID%)
Parameters: LibID (word) - the ID of the library to lmload
Errors: $6203 - invalid library ID number

$6204 - the library isn't loaded
Memory Manager errors

SetLibrary ($2C62)
Makes the specified library the current one use with the drawing or animation tools.
Examples: SetLibrary(LibID);

TOOLBOX(48, 44 : LibID%)
Parameters: LibID (word) - the ID of the library to make current
Errors: $6203 - invalid library ID number

$6204 - the library isn't loaded
Memory Manager errors

GetLibrary ($2D62)
Returns the library id of the current library.
Examples: LibID := GetLibrary;

TOOLBOX(48, 45 : 0; LibID%)
Parameters: LibID (word) - the ID of the current library (-I ifnene)
Errors: none

DrawTools 3.1

Animation Tools

Tools used in animating objects & handling animation sequences.

Fine Pixie Data Record:
0,1 - X Vector Low (word)
2,3 - X Position Low (word)
4,5 - X Vector Hi (word)
6,7 - X Position Hi (word)
8,9 - Y Vector Low (word)
10,11 - Y Position Low (word)
12,13 - Y Vector Hi (word)
14,15 - Y Position Hi (word)
16 - Index (byte)
17 - Status (byte)

Coarse Pixie Data Record:
0,1 - Vector (word)
2,3 - Position (word)
4 - Index (byte)
5 - status (byte)

Simple Pixie Data Record:
o -Index (byte)
I - Last Frame (byte)

38

roJ When you animate a pixie, the new pixie position is calculated by adding the vector value to the position
ILl value, resulting in the new position. For example, a fine pixie with an x vector of I (hi I, low 0) and an

original x position of 10 (hi 10,10 0) will move to x position II the next time it is animated.

Sequence
Byte
0 ... 31
32 ... 247
248
249
250
251
252
253
254
255

Description Parameter Bytes Following Byte

picture to use in current library -
rereved
change status byte
change fine pixie dir relative
change coarse pixie direction
change fine pixie direction
change fine pixie y direction
change fine pixie x direction
change library
end of sequence

new status (byte)
X & Y vectors to add to current vectors (4 words)
new direction (word)
new X & Y words (4 words)
neW Y words (2 words)
neW X words (2 words)
LoadLibrary logical number (word)
position to resume at (byte)

[E] For simple pixies, any negative byte (128 or bigger) is considered an end of sequence command.

NewPixie (S3A621
Returns a number of a pixie that's not in use. When allocating several pixies, remember to use SetPixie after each
NewPixie, or NewPixie will return the same number each time. -1 is returned if no pixie is free.
Examples: MyPixieNum := NewPixie;

TOOLBOX(98, 58 : 0; MyPixieNum%)
Parameters: MyPixieNum (word) - the pixie number (0 ... 15)
Errors : none

DrawTools 3.1

ClearPixie ($3862)
Deallocates the specified pixie table position.
Examples: ClearPixie(MyPixieNum);

TOOLBOX(98, 59 : MyPixieNum%)
Parameters: MyPixieNum (word) - the pixie number (0 ... 15)
Errors: $62FF - the pixie number is out of range, or the position is already free

SetPixie ($4E62)
Sets up a pixie for use. If that pixie already exists, the old pixie is overwritten.
Examples: SetPixie(pixnum, pixiedesc, pixieptr);

TOOLBOX(48, 78: pixnum%, pixiedesc%, pixieptrh%, pixieptrl%)
Parameters: pixnum (word) - the pixie number (0 .. 15)

pixiedesc (word) - description of the pixie:
bit 15 - pixie visible (TRUE) or invisible (FALSE)
bit 14 - pixie matted (TRUE) or not matted (FALSE)
bit 3-13 - reserved, set to 0
bit 0-2 - pixie type (O=simple, l=coarse, 2=fine)
pixieptr (long) - pointer to the pixie data record

Errors: $62FF - pixie number is out of range

GetPixie ($4F62)
Returns a pointer to the specified pixie's data record.
Examples: PixiePtr := GetPixie(PixieNum);

TOOLBOX(98, 79 : 0,0, PixieNum%; PixiePtrL%, PixiePtrH%)
Parameters: PixieNum (word) - the pixie number

PixiePtr (long) - pointer to the pixie data record
Errors: $62FF - pixie number is out of range

SetPixieSeq ($2A62)

39

Assigns the specified animation sequence to a pixie; any old sequence is overwritten. 'fIte sequence index (in the
pixie data record) is not changed.
Examples: SetPixieSeq(PixieNum, LibID%, SeqPtr);

TOOLBOX(98, 42 :PixieNum%, UbID%, SeqPtrH%, SeqPtrL%)
Parameters: PixieNum (word) - the pixie number

UbID (word) - the default picture library
SeqPtr (long) - pointer to the animation sequence

Errors: $62FF - pixie number is out of range

Get Pi xieSeq ($50 62)
Returns the pointer to a pixie's animation sequence.
Examples: SeqPtr := GetPixieSeq(PixieNum);

TOOLBOX(98, 80: 0,0, PixieNum% ; SeqPtrL%, SeqPtrH%)
Parameters: PixieNum (word) - the pixie number

SeqPtr (long) - pointer to the animation sequence
Errors: $62FF - pixie number is out of range

DrawTools 3.1

HidePixie ($5262)
Stop drawing a pixie on subsequent animation calls, but continue animating it as if it were visible.
Examples: HidePixie(PixieNum);

TOOLBOX(98, 82 : PixieNum%)
Parameters: PixieNum (word) - the pixie number
Errors: $62FF - the pixie number is out of range

ShowPixie ($5162)
Draw a pixie on subsequent animation calls.
Examples: ShowPixie(PixieNum);

Parameters:
Errors :

TOOLBOX(98, 81 : PixieNum%)
PixieNum (word) - the pixie number
$62FF - the pixie number is out of range

DisablePixie ($2862)
Stop animating a pixie on subsequent animation calls.
Examples: DisablePixie(PixieNum);

TOOLBOX(98, 40 : PixieNum%)
Parameters: PixieNum (word) - the pixie number
Errors: $62FF - the pixie number is out of range

EnablePixie ($2962)
Animate a pixie on subsequent animation calls.
Examples: EnablePixie(PixieNum);

TOOLBOX(98, 41 : PixieNum%)
Parameters: PixieNum (word) - the pixie number
Errors: $62FF - the pixie number is out of range

AnimatePixie ($5362)

40

Animate a single pixie one picture along its sequence. Unlike Animate, you will have to use SetLibrary to select
the picture library for the pixie. The drawing position for the drawing tools is unaffected.
Examples: AnimatePixie(PixieNum);

TOOLBOX(98, 83 : PixieNum%)
Parameters: PixieNum (word) - the pixie number
Errors: $62OC - Command for a difterent kind of pixie (disables pixie)

$620D - Undefined command in sequence (disables pixie)
$620E - Pixie doesn't exist
$62FF - Pixie number is out of range
SetLibrary errors

Animate ($2762)
Animates an of the pixies one picture along their sequences. The drawing position for the drawing tools is
unaffected.
Examples :

Parameters :

Animate;
TOOLBOX(48, 39)
none

DrawTools 3.1

Errors: $62OC - Command for a different kind of pixie (disables pixie)
$620D - Undefined command in sequence (disables pixie)
SetLibrary errors

ErasePixie ($6862)
Erases the specified matted pixie with the corresponding contents of the shadow screen.
Examples: ErasePixie(Pixie);

TOOLBOX(98, 107: Pixie%)
Parameters: Pixie (word) - the pixie number
Errors: $620E - Pixie doesn't exist

$6211 - Not a matted pixie
$62FF - Pixie number is out of range

EraseAlIPixies ($6C62)
Erases all enabled, matted pixies.
Examples: EraseAlIPixies;

TOOLBOX(98, 108)
Parameters: none
Errors: none

41

DrawTools 3.1 42

Screen Tools

Tools involving the screen, including those involving shadowing and the SCBs.

CLSi ($3462)
This tool acts the same as QuickDraw II"s ClearScreen.
Examples: CLS (ColourWord);

TOOLBOX(48, 52: ColourWord%)
Parameters: ColourWord (word) - word to fill the screen with
Errors: none
t Before System 6.0, ClearScreen would not clear the shadow screen; CLS works fine on older systems.

QuickWipe ($lC621
This tool copies the shadow screen to the main screen.
Examples: QuickWipe;

TOOLBOX(48, 28)
Parameters: none
Errors: none

ynwipe ($3562)
This tool copies the shadow screen to the main screen using a "Venetian blind" effect.
Examples: VBWipe;

TOOLBOX(48, 53)
Parameters: none
Errors: none

FadeDone ($4C62)
Returns TRUE if a fade is finished fading. In the current version of DrawTools, all fading occurs during the InlOut
call; future versions will fade during the FadeDone calls to allow animation to continue during the fading process.
For compatibility, always have a REPEAT ... UNTIL FadeDone (or the equivalent in your language) immediately
after using a fade tool.
Examples: done := FadeDone;

TOOLBOX(98, 76 : 0; done%)
Parameters: done (word) - TRUE ifthe last fade has been completed
Errors : none

QuickFadeQutlIn ($1611762)
Fades the colours in the first eight palettes to black, or restores them to their original values. The upper eight
palettes are used to store the original palettes.
Examples: QuickFadeIn(rate);

TOOLBOX(48, 22 : rate%)
Parameters: rate (word) - # 60th's of a second between INCslDECs
Errors : none

DrawTools 3.1 43

IncrFadeOutlIn ($1811962)
Fades the colours in the flrst eight palettes to red, then to black, or restores them to their original values
("incremental fade"). The upper eight palettes are used to store the original palettes.
Examples: IncrFadeIn(rate);

TOOLBOX(48, 24)
Parameters: rate (word) - # 60th's of a second between INCslDECs
Errors : none

ShadowOn ($1262)
This tool enables the hardware shadowing of the shadow screen. If you open a new grafport (using OpenPort) with
shadowing enabled, the port will be assigned to the shadow screen.
Examples: ShadowOn;

TOOLBOX(48, 18)
Parameters: none
Errors: none

ShadowOff ($1162)
This tool disables the hardware shadowing of the shadow screen. If you open a new grafport (using OpenPort) with
shadowing disabled, the port will be assigned to the main screen.
Examples: ShadowOff;

TOOLBOX(48,17)
Parameters: none
Errors: none

WaitYB ($1362)
This tool passes time until the beginning of the next vertical blanking period (1160 to 1130 of a second). If you erase
during a vertical planking period, you will have less flicker in your animation.
Examples: WaitVB;

TOOLBOX(48,19)
Parameters: none
Errors: none

Wait Line ($SE62)
Tllis tool waits until your monitor is drawing a particular line. Use this to reduce flicker when you are drawing by
waiting until an object is drawn on the monitor before erasing it.
Example: WaitLine(line);

TOOLBOX(98, 94 : line%)
Parameters: line (word) - line number to wait for, 0 .. 199

if line < 0, line is treated as 0
if line> 199, line is treated as 200 (same as WaitVB)

Errors: none

DrawTools 3.1

SetBorder ($lF62)
This tool sets the colour of the screen border.
Examples: SetBorder(Colour);

TOOLBOX(48, 31 : Colour%)
Parameters: Colour (word) - the new colour (0 ... 15) as in the control panel
Errors: none.

GetBorder ($1E62)
This tool returns the current colour of the screen border.
Examples: Colour := GetBorder;

TOOLBOX(48, 30 : 0; Colour%)
Parameters: Colour (word) - the colour (0 ... 15) as in the control panel.
Errors: none

SetSCDs ($3662)

44

This tool sets specific bits in the SCB's for a range of lines. This tool should not be used to change the intemlpt bit
while the SCB intemlpt handler is enabled.
Examples: SetSCBs(linel, line2, BitsToSet);

TOOLBOX(98, 54: linel %, line2%, Bits%)
Parameters: linel (word) - first bound line

line2 (word) - last bound line
BitsToSet (word) - mask of bits to set (l=set bit)

Errors : none

ResetSCDs ($3762)
This tool resets specific bits in the SCB's for a range of lines. This tool should not be used to change the intemlpt
bit while the SCB intemlpt handler is enabled.
Examples: ResetSCBs(linel, line2, BitsToReset);

TOOLBOX(48, 55 : linel %, line2%, Bits%)
Parameters: line I (word) - first bo,md line

line2 (word) - last bound line
BitsToReset (word) - mask of bits to reset (l=reset bit)

Errors : none

DrawTools 3.1 45

Scrolling Tools

Tools to scroll portions of the screen.

Record:
byte offset into fill picture

The
0,1
2,3
4-7
8,9
10,11
12-15

Format of a Scroll
offset (word)
width (word)
fillpic (long)

width of the picture in bytes (eg. 160 for a screen image, 12 for DT pic)
ptr to picture to fill with

first (word)
numblocks (word)
=ved

ScrollLinesL ($3062)

first (top) screen line to scroll
number of 8 line blocks to scroll
must be 0

This tool scrolls the indicated lines one block (2 words) to the left, and fills them from a specified picture. The offset
is incremented by the width.
Examples: ScrollLinesL(ScrollRec);

TOOLBOX(48, 48 : ScroIlRecH%, ScrollRecL%)
Parameters: ScrollRec (long) - pointer to the scroll record
Errors: $6206 - first line is out of range

ScrollLinesR ($3162)
This tool scrolls the indicated lines one block (2 words) to the right, and fills them with a specified picture. The
offset is decremented by the width.
Examples: ScrollLinesR(ScrollRec);

TOOLBOX(48, 49 : ScroIlRecH%, ScrollRecL%)
Parameters: ScrollRec (long) - pointer to the scroll record
Errors: $6206 - first line is out of range

[E] Note: The current version of ScrollLinesR will not work properly if the first line is'O.

ScrollLinesU ($3262) inot available yeO
This tool scrolls the indicated lines one block (2 words) to up, and fills them with a specified picture. The offset is
incremented by a row of blocks

ScrollLinesD ($3362) (pot available yeO
This tool scrolls the indicated lines one block (2 words) to down, and fills them with a specified picture. The offset
is decremented by a row of blocks.

DrawTools 3.1

Palette and Colour Tools

Tools that change colours and manipulate palettes.

SetPalette ($lA62)
This tool sets the palette for a range of screen lines.
Examples: SetPalette(linel, line2, palette);

TOOLBOX(48, 26: linel%, line2%, palette%)
Parameters: linel (word) - first bound line

line2 (word) - last bound line
palette (word) - new palette number for lines (0 .. 15)

Errors: none (no range chocking)

GetPalette ($3862)
This tool returns the palette assigned to a particular screen line.
Examples: palette := GetPalette(line);

TOOLBOX(48, 56 : 0, line% ; palette%)
Parameters: line (word) - which line to chock

palette (word) - palette number for that line (0 ... 15)
Errors: none

FadePal ($1D62)
This tool dims the source palette colours and stores them in the ~ palette.
Examples: FadePal(sourcepal, targetpal);

TOOLBOX(48, 27: sourcepal%, targetpal%)
Parameters :s ourcepal (word) - palette to fade (0 ... 15)

targetpal (word) - where to store the faded palette (0 ... 15)
Errors: none

UnfadePal ($!D62)

46

This tool brightens the source palette colours towards those iu the target palette. The colours are stored in the source
palette.
Examples :

Parameters :

Errors :

UnfadePal(SourcePal, TargetPal);
TOOLBOX(48,29 : sourcepal %, targetpal %)
sourcepal (word) - palette to brighten (0 ... 15)
largetpal (word) - palette to compare with (0 .. 15)
none

DrawTools 3.1

SetColour ($4062)
Combines the red, green and blue values into a colour word.
Examples: word := SetColour(red, green, blue);

TOOLBOX(48, 64: 0, red%, green%, blue%; word%)
Parameters: word (word) - palette colour word

red (word) - amOlmt of red (0 ... 15)
green (word) - amount of green (0 ... 15)
blue (word) - amolmt of blue (0 ... 15)

Errors: none. Bad values result in a meaningless colour word.

Set Col Percent ($4162)
Combines the red, green and blue percentage values into a colour word.
Examples: word := SetColPercent(red, green, blue);

TOOLBOX(48, 65: 0, red%, green%, blue%; word%)
Parameters: word (word) - palette colour word

red (word) - percentage of red (0 .. .100)
green (word) - percentage of green (0 ... 100)
blue (word) - percentage of blue (0 ... 100)

Errors: none. Bad values result in a meaningless colour word.

Elaboration: A few example RGB percent values (extracted from ACM SIGGRAPH '89 course notes):

Gold 78,61, 16 Old (dark) gold 78,43,10
Platinum 83,79,56 Silver 81,82,70
Antique (dark) silver 53,52,47 Steel 55,62,59
Copper 97,60,28 Brass 69,63,23
Iron 18,7,6 Sunlight 100,96,92
Moonligh 75,81, 100 Naples Yellow 100,66,7
Cadmium Red (Ruby) 89,9,5 Brown Madder 86, 16, 16
King's Blue 1,57,76 Indigo 3, 18,33
Emerald Green 0, 79, 34 Terre-verte 22,37,6
Ivory Grey 16, 14, 13 Lamp Black 18, 28,,23

FindColour ($4262)
This tool search the specified palette for the closest colour to the one requested.
Example: colour:= FindColour(numcol, palette, colourWord);

TOOLBOX(48, 66: 0, numcol%, palette%, colourWord%; colourWord%)
Parameters: numcol (word) - 16 if 320 mode, 4 if640

Errors :

colour (word) - the colour number of the closest colour
palette (word) - the palette to search
colourWord (word) - the palette colour word to match
none

47

DrawTools 3.1

UlendColour ($SF621
Blends two colours together to fonn a new colour.
Example: colour := BlendColour(weight, call, co(2);

TOOLBOX(98, 95: 0, weight%, coli %, coI2%; colour%)
Parameters: colour (word) - the new colour word

weight (word) - 0 .. 16, amount of second colour to mix in
call (word) - the tirst colour word
col2 (word) - the second colour word

Errors: $62FF - weight is out of range

rol Elaboration: Some BlendColour Applications:
lLJ (1) Blending: colour := BlendColour(weight, coil, co(2);

(2) Bleaching (eg. for distance): colour:= B1endColour(distance, col, backgrOlmdcol);

48

(3) Anti-aliasing: (a) colour := BlendColour(amOimt in pixel, colour, backgroundcol); (b) colourNum :=
FindColour(16, 0, colour); {for 320 mode}
(4) Saturating: colour:= B1endColour(how much to saturate, colour, $OFOO);

~'adeCoIQur ($6062)
Fades or brightens a colour.
Example: COIOUf:= FadeColour(oldcolour, difference);

TOOLBOX(98, 96: 0, oldcolour%, difference%; colour%)
Parameters: colour (word) - the new colour word

oldcolour (word) - the original colour word
difference (word) - (-15) to (+ 15), amount to change the colour by

Errors: None

Elaboration: Some FadeColour Applications:
(I) Darken colour: colour:= FadeColour(oldcolour,-I);
(2) Brighten colour: colour:= FadeColour(oldcolour, + I);

FindPalette ($6162)
This is my "mini Palette Manager" tool. Returns the colour numhers for the entries in the current palette which
most closely resemble the colours that you expect in that palette. Especially useful for NDAs, where you don't know
what colours will be on the screen. FindPalette only recognises pure colours in 640 mode (not dithered colours).
Example: changed := FindPalette(colours, palette);

TOOLBOX(98, 97: 0, colollrsH%, coloursL%, paletteH%, paletteL%; changed%)
Parameters: changed (boolean) - Tnte if the colours have changed since last FindPalette

Errors :

colours (long) - address of a list of 16 colour numbers corresponding to the colours in the palette
palette (long) - address of palette (a QuickDraw II colorTable) of desired colours
none

DrawTools 3.1

Interrupt Tools

Tools Involving SCB (or Horiwntal Retrace, or Scan Line) Interrupts

Format of a scn interrupt
0-3 longword TaskPtr
4-5 word Scan
6-7 word SigWord
8-A 3 bytes EntryPt

task header:
Use by the Interrupt Tools: do not modify
Line Line number of the task
signature word: always $D44D
task entry pointer

49

Desillnin~ an Interrupt Task: The task must be a long subroutine (that is, end in an RTL instruction). B and D
registers must be preserved, but other registers (A,X,Y,P) need not be. A task may have two or more headers if it is
to be used on two different screen lines. Because DrawTools is non-reentrant, never call a DrawTools from a task
unless your are sure the main program is not using DrawTools at the same time.

IMPORTANT: (I) I have no idea why, but if you use the SCB interrupts, make sure you unload DrawTools before
your program quits or the next program that runs will crash; at least, it happens with Merlin 16+ and EXE files -> it
crashes during a Misc. Tools _GetVector call in DrawStartup. (2) When the interrupts are enabled with
EnableSCBInts, do not switch the processor into emulation mode (e=1) without suspending interrupts (with SEll.
The patch I placed on the intemJpt manager is not designed to handle emulation mode IRQs.

EnableSCBInts ($4A62)
This tool must be used before all other SCB interrupt tools. Patches the system interrupt manager to use my SCB
interrupt handler.
QuickDraw SCB intemJpt use is suspended. The task list is cleared.
Examples: EnableSCBInts(enable):

TOOLBOX(98, 74 : enable%)
Parameters: enable (boolean) - TRUE if intemJpts are to be enabled
Errors: none

SetSCBInt ($3C62)
Installs a SCB interrupt task for the given screen line. Automatically suspends all tasks until the next
ResumeSCBInts.
Examples :

Parameters :
Errors :

SetSCBInt(TaskPtr):
TOOLBOX(98, 58: MachineLgH%, MachineLgL%)
TaskPtr (longword) - pointer to the task header
$6205 - Task signature isn't $D44D
$6206 - The screen line is Ollt of range
$6207 - A task already exists for that line

DelSCBInt ($3D62)
Deletes a SCB interrupt task. Automatically suspends all tasks.
Examples: DeISCBInt(TaskLine):

TOOLBOX(98, 59 : TaskLine%)
Parameters: TaskLine (integer) - screen line of the task
Errors: $6206 - The screen line is out of range

DrawTools 3.1

$6207 - A task doesn't exist for that line

ClrSCBInts ($3E62)
Deletes all SCB intemlpt tasks. Automatically suspends all tasks.
Example: ClrSCBlnts;

TOOLBOX(48, 62)
Parameters: none
Errors: none

ResumeSCDInls ($3F62)
Waits for the next vertical blanking period and resumes executing all SCB interrupt tasks.
Example: ResumeSCBInts;

Parameters:
Errors:

TOOLBOX(48, 63)
none
$6208 - SCB interrupts not enabled
$62FF - no tasks to execute

50

DrawTools 3.1 51

Printing Tools

Tools to help assembly language programs write on the screen.

Ready2Print ($5662)
This must be the first printing call in a new window (or grafport). Gets a pointer to the current grafport, resets the
margins to 0, and 'homes" the QuickDraw pen.
Examples: - Ready2Print
Parameters: NOlle
Errors: None

SetLTMargins ($5D62)
Sets the left and top printing margins. Use Home to place the pen in the top-left comer of the new margin settings.
Examples: -SetLTMargins #Left; /fTop
Parameters: Left (word) - left margin, in pixels

Top (word) - top margin, in pixels
Errors: None

Home ($5762)
Moves the QuickDraw pen to the left end of the first text line on the screen, like BASIC's HOME.
Examples: -Home
Parameters: None
Errors : None

HTab ($5862)
Moves the pen the specified number of pixels to the right of the left margin.
Examples : - HTab #Indent
Parameters: Indent (word) - number of pixels to indent
Errors: None

YTab ($5962)
Moves the pen down the specified number of screen lines from the top margin, based on the height of the current
font.
Examples :
Parameters :
Errors :

- VTab #Newline
NewLine (word) - new screen line; 1 is the top line.
$62FF - NewLine was negative or zero

DrawTools 3.1

Print ($SA62)
Draws a P=I string on the screen.
Examples: -Print IIstr; IImode
Parameters: str (long) - pointer to the Pascal string

Errors:

mode (word) - printing mode:
bit 15 -1RUE if a carriage return is to follow printing
bit 7 - tab to next column of 64 pixels after printing
bit 6 - clear to end of the line
other bits - reserved; set to 0

none

PrintHex ($SB62)
Draws a hexadecimal value on the screen.
Examples: - PrintHex lInumber; llmode
Parameters: number (word) - the number to print

mode (word) - same as with Print
Errors : none

PrintInt ($SC62)
Draws a signed integer value on the screen.
Examples: -PrintInt lInumber; llmode
Parameters: number (word) - the number to print

mode (word) - same as with Print
Errors : none

52

DrawTools 3.1 53

Driver Tools

For a general discussion on game and network drivers, including how to design them, see Appendix D.

LoadDriver ($6D62)
Loads a specified game or net driver into memory.
Example: DriverPtr := LoadDriver(DriverPath);

TOOLBOX(98, 109: 0, 0, DriverPathH%, DriverPathL%; DriverPtrL%, DriverPtrH%)
Parameters: DriverPath (long) • the Pascal string pathname

DriverPtr (long) • pointer to the driver
Errors: GS/OS errors

UnloadDriver ($6E62)
Unloads a specified game or net driver from memory.
Example: UnloadDriver(DriverPtr);

Parameters:
Errors:

TOOLBOX(98, 110: DriverPtrH%, DriverPtrL%)
DriverPath (long) . pointer to the driver to unload
$62FF . Imknown error while unloading

SetGameDriver ($6362)
Installs a game driver for the specified player.
Example: SetGameDriver(playerNmn, driverPtr);

TOOLBOX(98, 99: playerNum%, driverH%, driverL%)
Parameters: playerNum (word) . 1..4, the player to use the game driver

driverPtr (long) • address of the game driver
Errors: $62FF . DrawTools version is too low for this driver

$620F . device number is out of range
$6210· The device this driver operates can't be found on the GS

SetNetDriver ($6262)
Installs a network driver so that remote game drivers can be supported.
Example: SetNetDriver(driverPtr);

Parameters :
Errors :

TOOLBOX(98, 98: driverH%, driverL%)
driverPtr (long) . address of the net driver
$62FF • DrawTools version is too low for this driver
$6210 . The device this driver operates can't be fOlmd on the GS

SendNetwork ($6462)
Sends a message to the net driver and returns status information from the driver. The two parameters are used for
both.
Example:

Parameters :

Errors :

SendNetwork(command, data);
TOOLBOX(98,100: commandH%, commandL%, dataH%, dataL%)
command (long) . address of the command; holds result after call
data (long) . data for the command; data for the result
$62FF . no net driver has been installed

DrawTools 3.1 54

fOl SendNetwork commands:
LLJ Notes: (1) Commands marked with an asterisk (*) mark commands called automatically by DrnwTools when

required. (2) "Post" is used in the sense of PostEvent in the Event Manager: transmits a message on the
network or to the driver.

0- no command (use to poll the network)
I - request the number of remote players
*2 - request the pseudo game driver address (returned in data) (used by SetNetDriver)
*3 - post a new local player (data=playerU) (used by SetGameDriver)
4 - post a local player quitting (data=player#)
*5 - post local GetJoy result (data=device(hytel),axis(byte2),value(bytes3&4) (used by GetJoy)
*6 - post local GetFire result (data=result) (used by GetFire)
*7 - post local StillFiring result (data=result) (used by StillFiring)
8 - post abort game message (you can use it for whatever you want)
*9 - init the net driver (used by SetNetDriver)
* to - shut down the net driver (used by DrawShutDown)
11-15 - reserved for future use
16-123 - application defined
124 - set address of where to receive incoming data (data=address) (for 125 ... 127)
125 - prepare to transmit (data=player(low), number of blocks to be sent(high»
126 - block transmit(data=pointer to 256 bytes (a "block"»
127 - done transmit(data=player who sbould bave received blocks)
128 - driver will begin displaying status information on the screen (use DrawTools' Print tools)
129 - driver will stop displaying status information
130-255 - net driver defmed. With the Null Network Driver:

130 - fake a new remote player (#2) beginning to play
131 - fade a remote player (#2) quitting

>255 -reserved for future use

Results returned by SendNetwork:
Note: only 0 (null event) or errors should be returned during a block transmit or an infqrmation request, to avoid
having to handle two things at once!

o -null event (nothing interesting happened)
I - abort game was received from a remote GS
2 - a new remote player has started to play (data=player#)
3 - an old player has quit playing (data=player#)
4 - bad connection (can't find the network)
5 - bad network error
6 - network full (already 4 players playing)
7-15 -reserved for thtureuse
16-124 - you received an application defined event of same number (data=other information)
125 - prepare to receive transmission (data=player(low), number of 256 byte blocks (hi»
126 - received 256 bytes of data (data=bandle to data)
127 - end of data (data=player who should have received data)
> 126 - reserved for future use

DrawTools 3.1 55

Get loy ($4362)
Returns the position of the joystick along one axis. Horizontally, left (-2) through right (+2); vertically, top (-2)
through bottom (+2). There must be a 3 microsecond delay between GeUoy calls.
Examples: Position := GeUoy(Device, Axis);

TOOLBOX(98, 67: 0, Device%, Axis% ; Position%)
Parameters: Position (word) - the joystick position, -2 ... 2

Device (word)
- 0 for internal joystick, or 1..4 for a game driver

Axis (word) - 0 = horizontal axis; I = vertical axis.
- 2,3 - same, but for joystick #2 (device 0 Dilly)

Errors: . Axis value ANDed with 3.
$620F - device number out of range

GetFire ($4862)
Determines which joystick fire buttons have been pressed (but not held down) since last GetFirelStillFiring). The
button addresses were taken from the November '90 issue of '8116'.
Examples: Bultons := GetFire(Device);

TOOLBOX(98, 72: 0, Device%; Bultons%)
Parameters: Buttons (word) - mask of fire buttons

Errors :

bit 0 = I => button #0 is depressed
bit I = I => button #1 is depressed
bit 2 = 1 => button #2 is depressed
bit 3 = I => button #3 is depressed
bits 4 - 15 are :rero

Device (word) - 0 for iuternal joystick, or 1 .. 4 for a game driver
$620F - device number out of range

StillFiring ($4D62) ,
Determines which fire buttons are being held down, whether or not they were during the last GetFirelStillFiring call.
GetFire does not need to proceed a StillFiring call.
Examples: Buttons := StillFiring(Device);

TOOLBOX(98, 77 : 0; Buttons%)
Parameters: Buttons (word) - mask of fire buttons

Errors :

bit 0 = I => button #0 is depressed
bit I = I => button #1 is depressed
bit 2 = I => button #2 is depressed
bit 3 = I => button #3 is depressed
bits 4 - 15 are :rero

Device (word) - 0 for internal joystick, or 1..4 for a game driver
$620F - device number out of range

DrawTools 3.1 56

I Miscellaneous Tools I
GetODT ($2062)
Returns the Quick Dispatch Table (QD1), a set of 16 JML instmctions (64 bytes) to commonly used DrawTools
routines. These are provided for assembly language programs that wish to avoid the overhead associated with tool
calls. You must be io 16-bit native mode to execute the QDT routines. Jumping to a non-{lxisted JML will cause
unpredictable results, so check the toolset version before using GetQDT to en.1lfe the JML's are available.

Preparing a quick dispatch table:
Draw adrl 0 ; the quick dispatch table of 16, 4-byte JML entries
Draw48 adrl 0 ; in ORCA/M use i4

vector16 adrl 0

PushPtr Draw
_GetQDT

Using the quick dispatch table:
LDA #Thepic
JSL Draw

Register results after call:
A - the result, if any
X, Y, B, D -Imchanged
P - reflects the result, if any, else scrambled

The vectors are defined as:
Vector #1 - DrawTools 3.0 - Draw
Vector #2 - DrawTools 3.0 - Draw48
Vector #3 - DrawTools 3.0 - DrawOn
Vector #4 - DrawTools 3.0 - Draw480n
Vector #5 - DrawTools 3.0 - AnimatePixie (errors returned in A)
Vector #6 - DrawTools 3.0 - Rnd
Vector #7 - DrawTools 3.0 - Odds
Vector #8 - DrawTools 3.1 - WaitLioe
Vector #9 - DrawTools 3.1 - ErasePixie (errors returned in A)
Vector #10 - DrawTools 3.1 - save intemlpt space
Vector #11 - DrawTools 3.1 - restore iotemlpt space
Vector #12-#16 - reserved for futtlf6ltse

Vectors 10 and II backup DrawTools' direct page space. This allows you to call most DrawTools' ftmctions from a
RlmQ task or another ioterrupt task. Alternately, you can use the scheduler. You will have to use these if an
intemlpt may OCCllf duriug a DrawTools call: f.ihlf6 to do so may crash your program.

Examples :
Parameters:
Errors :

For Merlin 16: -GetQDT #MyQuickDispatchTable
MyQDT (long) -location to save the copy of the quick dispatch table
none

DrawTools 3.1

WorkCursort ($4662)
Replaces the mouse cursor with the work cursor. Currently, the cursor is a pair of gears.
Examples: WorkCursor (NumCalls)

TOOLBOX(98, 70 : NumCalls%)
Parameters: NumCalls (word) - 0 = animate on every StillWorking, n = every nth
Errors: none
t See WorkCursor2.

WorkCursor2 ($6862)
Same as WorkCusor, but works properly with accelerator cards.
Examples: WorkCursor2 (NumTicks)

TOOLBOX(98, 70: NumTicks%)
Parameters: NumTicksls (word) - 0 = animate every StillWorking, n = every nl60ths secs.
Errors: none

StillWorking ($4762)

57

WorkCursorlWorkCursor2 must be called fIrst. Checks to see if the work cursor needs animating. Use InitCursor if
you want to restore the cursor to an arrow.
Examples: StillWorking:

TOOLBOX(98, 71)
Parameters: none
Errors: none

Odds ($4462)
Returns TRUE the given percentage of the time. Percentages of zero or less are always FALSE: percentages of 100
or greater are always TRUE. This tool is accurate to about 2%.
Examples: Boolean := Odds(Percent):

TOOLBOX(98, 68: 0, Percent%: Boolean%)
Parameters: Boolean (word) - the truth value

Percent (word) - the percentage of the time to be true.
Errors: none

RND ($4562)
Returns a pseudorandom number between 1 and the specifIed limit. Limits of zero or less always result in zero.
Examples: number := RND(limit):

TOOLBOX(98,69 : 0, Iimit% : number%)
Parameters: number (word) - the random number, l. .. limit

limit (word) - the maximum random number (1 ... 32767)
Errors : none

Norma IRND ($6562)

DrawTools 3.1 58

Returns a normally-distributed, or "bell-curved", pseudorandom number between 1 and the specified limit. The
numbers are more likely to come from the center of the range than from the low or high ends of it.
Examples: number:= NormalRND(limit);

TOOLBOX(98, 101: O,limit; number)
Parameters: number - the random number, l...limit

limit - the maximum random number (1 ... 32767)
Errors: none

HLoad ($21<'62)
Handle LOAD. Loads a specified file into memory and returns a handle to it. (For those who like avoiding all those
as/os details, like me.) The handle is left locked.
Examples: DataHandle := HLoad(Path, FileType);

TOOLBOX(98, 47 : 0,0, PathH%, PathL%, FileType%; DataL%, DataH%)
Parameters: Path (longword) - pointer to the as/os pathname

FileType (word) - file type expected (or 0 for any type)
DataHandle (long) - handle to the file data

Errors: as/os and memory manager errors (file busy errors handled internally)
$620B - FileType mismatch

HSa ve ($5462)
Handle SAVE. Saves the contents of a handle in a file. If a new file is created, the file type is the same as the
FileType parameter, and the AuxType is O. The handle is left locked.
Examples: HSave(Path, FileType, DataHandle);

TOOLBOX(98, 84 : PathH%, PathL%, FileType%, DataH%, DataL%)
Parameters: Path (longword) - pointer to the pathname

FileType (word) - file type expected (or 0 for any type)
* type -I is a special type: PNT/$OOOI, packed SCreen (used with SetBackground)

DataHandle (long) - handle to the data to be saved
Errors: as/os and memory manager errors (file busy errors handled internally)

$620B - FileType mismatch

BarGraph ($4B62)
Draws a bar graph in a specified rectangle. The graph shows the percentage relationship between the "value"
parameter and the max value in the graph record; values < 0% are treated as 0%; values> 100% are treated as 100%.
If the rectangle is larger vertically, the graph is drawn upward; if the rectangle is larger horizontally, it is drawn
rightward.
Examples :

Parameters:

Errors :

BarGraph(GraphRec, value);
TOOLBOX(98, 75: GraphRecH%, GraphRecL%, value%)
GraphRec (long) - pointer to a graph record
Gmph record:

0-7 Graph
8,9 ForeCol
A,B BackCol
C,D Max
E-ll resecved

none

rectangle containing the graph
SolidPenPat value (-I for current pen pat)
SolidBackPat value (-1 for current hack pat)
maximum value for the graph
reserved; set to 0

DrawTools 3.1 59

GetMIIz ($6267)
Returns the current GS speed to the nearest MHz. (Also adjusts GetJoy so that it will operate properly at the current
speed.)
Examples:

Parameters:
Errors:

Speed := Get MHz;
TOOLBOX(98, 103 : 0; Speed %)
Speed (integer) - speed of the GS to the nearest MHz.
none

Print Window ($6A62)
Sends a window, grafport or the screen to the printer. 111e Print Manager is automatically started, if necessary. No
clipping is performed on overlapping windows. Also, you will need at least 32K free: PrintWindow saves the
contents of the screen before showing the dialogs.
Examples: PrintWindow(WindowPtr, Options);

TOOLBOX(98, 106: WindowPtrH%, WindowPtrL%, Options%)
Parameters: WindowPtr (long) - pointer to the window or grafport; if nil, prints whole screen

Options (integer)
bit 0 - if 1, shows the "Page Setup" dialog box
bit 1 - if 1, shows the "Print" dialog box
bit 2-15 - reserved; set to 0

Errors: Print Manager errors
Memory Manager errors

Hex
$0000
$6201
$6202
$6203
$6204
$6205
$6206
$6207
$6208
$6209
$620A
$620B
$62OC
$620D
$620E
$620F
$6210
$6211
$62FF

Dec
o
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25343

III, Appendices

Appendix A: DrawTools' Error Summary

Meaning
No error
Too many libraries
Sequence number out of range
Invalid library ID
The library is loaded
TIUIk signature missing/invalid
Screen line out of range
Task exists (or doesn't exist, depending on tool)
seB tlUlks are not enabled
Library buffer tables full (currently, maximum 5 buffers, for 45K)
Not enough memory in bank 0 for more buffers
FileType Mismatch during a HLoadIHSave
Sequence command mismatch (wrong command for this kind of pixie)
Undefined sequence conunand in this version of DrawTools
Pixie exists (or doesn't exist, depending on tool)
PlayerlDevice number out of range
Game or Network Device not found
Not a matted pixie
General error (consult tool description)
- not implemented (ie. for Apple's two reserved tool numbers, /f7 and 1/8)

DrawTools 3.1

DPAddr
$0-3
4-5
6-9
A-D
E-F
10-23
24-27
28-35
36-41
42-43
44-45
46-55
56-65
66-75
76-7B
7C-7D
7E-81
82-83
84-85
86-87
88-89
8A-8B
8C-FF

Label
SCRNPTR
BASE_DP
PortPtr
GralPtr
MyJD
Temp
LineTable

StiUFire
FireMask
PixAlloc
PixType
PixVsMat

FontCode
GrafPort*
FontHeight
LeftMargin
RightMargin
UtilTemp
CurrentLib

Appendix B: Direct Page Usage

Description
Current drawing position, minus $2000
Picture location in bank 0
Used by DrawMain & DrawShadow, the current grafport
Ptr to QuickDraw II's pointer to the current grafport
Application's Memory !D, aux. type 15
Scratchpad space fur DrawTools
Ptr to QuickDraw II's line table
Used by fading and colour tools (don't modify)
Used by SCB Interrupt handler (don't modify)
Bits set if fire buttons are held, %0 .. 004321
Bits true if fire button exists, $0 .. 004321
bit 7 - pixie allocated, bit 6 - pixie disabled
pixie types
bit 7 - pixie visible, bit 6 - pixie matted
Scratchpad space for Animation tools
XOR of current font handle words
PIt to pnloc field in current grafport
Current font height
Left margin
Right margin
Used for dereferencing
Library !D for the current library
Misc. or future use (don't modify)

You may use any of the scratchpad space between DrawTools calls.

61

DrawTools 3.1 62

Appendix C: DrawTools and Other Toolsets

DrawTools should be compatible with all of the standard Apple toolsets. However, the following are a few things to
notice.

I. DrawIools and ESPfFfA's SoundTools croo1219)
You carUlot use the SCB Interrupt tools with the Soundtrack Tools.

2, Bit-mawed GrllPhics and QuickDraw II
a) Coordinates - DrawTools' coordinate system is identical to QuickDraw's 320 mode (0 ... 319, 0 ... 199). However,
the coordinates are always global. Use the QuickDraw function LocaJToGlobaJ when you are using
windowslgrafports to deteonine the proper coordinates.

b) 640 mode - DrawTools drawing functions will work as you'd expect, creating 48x24 pictures instead of 24x24
pictures. The coordinates are always 0 ... 319, 0 ... 199, even if you are using QuickDraw in 640 mode. To determine
the proper coordinates in a window/grafport, use the following (in Pascal): LocaJToGlobaJ(WindowPoint);
WindowPoint.h := WindowPoint.h div 2;
Drawwhatel~rAt(WindowPoint.h, WindowPoint.v, picture_number);

c) Mouse Cursor - The drawing functioos and screen scrolling functions operate directly on the screen, ignoring
the mouse cursor. If you need a cursor on the screen, use HideCursoriShowCursor.

d) Clipping - For speed, the drawing functions don't clip pictures to fit in the clipping regioos of the current
grafport (if you draw a picture, the entire picture is always drawn, even if it won't fit in a window).

3. Memory Mana~r
DrawTools uses auxID 1115. When you shut down DrawTooIs, all memory allocated with aux ID 1115 is disposed of
(including any HLoaded handles).

DrawTools 3.1 63

Appendix D: Network and Game Drivers

What are Network and Game Drivers?
DrawTools leis you assign devices for up to four players. You can specify a device number when you call

OetFire, StillFiring or OetJoy. Device 0 is always the os joystick, but device I to 4 can be assigned to any device.
By following the standards sel in this addendum, your ganle (or other application) will be able to play with any
device, allowing for even players on other os's. All this is possible by what I call a game driver.

A driver in as/os is a piece of software that mns an input/output device, like a printer or a disk drive. A game
driver is a piece of software that DrawTools uses to mn an input device, typically for a game (hence the name).
Oanle drivers are kept in a folder called DT.Drivers, located in the Tools folder on a boot disk. All your
application has to do is use SFOetFile (the standard Open ... dialog) to let the players select their drivers from that
directory. You load them with the System Loader and tell DrawTools which game driver to use for which player, and
the rest is don8 automatically.

If you want to go all the way and lei players play on separate OS's, you'll need a net driver as well. This is a
piece of software that DrawTools uses to communicate between separate computers, such as over a modem or an
AppleTaIk network. Using a net driver is a little more complicated than using game drivers alone, although
DrawTools does a lot coordinating behind the scenes for you. You have to use a special tool called SendNetwork
to send messages between the different OS's your program is mmJing on. SendNetwork also returns to you status
information about the other OS's, such as when a new player has started his computer and wants to join in, or when
one of the existing players loses or wanls 10 quit. Reading a player's device on another as is done the same way as
you would normally do, with OetJoy or the other joystick routines. If the player is not on your as, DrawTools asks
the Net Driver to find out the information for you.

Your Application

1
DrawTools

11---1
Oame Driver Net Driver

1--

Apple IIOS #1

Your Application

1
DrawTools

1----1
Net Driver Oame Driver

----Network----- --l

Apple lIaS #2

Figllre 1 - How the Game aod Net Drive", work together

I hope that by explaining the details here, that all the people that have more time than I do will get to work and
start making game and net drivers. I set up the mJes; somebody else makes the drivers. If you come up with a net or
game driver, please send me a copy and a letter, and I'll try to market them with future disks. If you jusl want to use
the net and game drivers, read on to find how how to set up your programs to support them. Located on the latest
DrawTools' Disks is a folder called DT.Drivers, which you can copy into the Tools folder of your boot disk
containing DrawTools. First, there is a sample game driver called Joystick that nms the as Joystick. Secoud,
there is a sample net driver called Null.NetDriver which mimics the some functions of a real net driver. (130 &
131 are special commands to mimic activities on a network for testing purposes - see SendNetwork in the reference.)
Source files for the Merlin assembler are included in the folder. You can use these to test your program if you want
to support game drivers, or net drivers and game drivers. As I mentioned previously, there is no reason 'game'
drivers have 10 be used in games. You might find it easier to write a game driver to operate a device like a flying
mouse (the headset mouse used fur the handicapped) than to write some kind of as/os driver (or whatever), and once
written, sucb a driver can be used in any program supporting game drivers. The possibilities are enormous.

A Few Definitions:

DmwTools 3.1 64

A device is something used by a person to offer input to an application, such as a keyboard, joystick, Koala pad, or
a microphone.
A local device is a device connected directly to a IIGS.
A remote device is a device connected indirectly to a IIGS, by an AppleTalk network, or a modem, or a SCSI port to
another IIGS.

A Game Driver is a piece of software which operates Or monitors a local device.
A Net Driver is a piece of software which is used by DmwTools to communicate over a network with remote
devices.

What Does My Application Have To Do To Support Game Drivers?

What the Application does ...
l. You will have to load the game drivers desired by the players (using LoadDriver) into memory. The drivers
should be located in the DT.Drivers folder in the Tools directory of the boot disk.
2. Use SetGameDriver (playerNum, DriverPtr) to install a driver for a particular person. One driver may be shared by
more than one person (unless, of course, it's stricUy a one person device, like a joystick - it's up to the players to
chose devices that make sense).
3. When you use GetJoy, GetFire, or StillFiring, use the playerNum to specify a particular device.
4. Unload the driver when you are done.

What DrawTools does ...
DrawTools will invoke the appropriate game driver instead of reading the GS joystick. If no driver exists, garbage is
returned by the call.

What the Game Driyer does ...
The game driver reads the local device and returns the information requested to DrawTools, which hands it to your
application.

What Does My Application Have To Do To Use Net Drivers?

What tbe Application does '"
I. Load the appropriate net driver into memory.
2. Use SetNetDriver(driverPtr) to install the net driver. The current version of DrawTools only supports one net
driver; you can't play over two different networks at tbe same time.
3. When a player on a local device wants to start playing, use SendNetwork to inform tbe other GS (or GS's) thst
there is a new player. A message is returned if the GS's are f\JII (DrawTools only supports 4 players at a time, even
over a network).
4. Periodically invoke SendNetwork (eg. by placing it in your main loop) to let the net driver cbeck on the network
and keep up-to-date with the other GS (or GS's). This is called polling the network. If tbere are new players jumping
into the game, or old players dropping out, SendNetwork will return the appropriate message. More details on the
uses of SendNetwork are listed in the reference.

What DrawIools Does , ..
If you use GetFire, GeUoy or StillFiring for a player on a remote device, DrawTools invokes the Net Driver and
asks it to find the infornllltion, which it returns to your application.

What the Net Driver Does ...
The driver must bandle tbe transmission and reception of data over the network. It takes care of identifying which
player number on the local GS corresponds to which device on which remote GS. When a new player enters the

OrawTools 3.1 65

network, the net driver finds a free player number and reports it to your application for use with GeUoy, etc.

How to Create a Game Driver

I. File description: your driver must be stored in OT.Drivers folder in Tools folder of the boot disk. FileType:
Generic Load File (type $BC) AuxType l.
2. ~ for you driver:

Offset Nrum ~
0 EntryPt (3 bytes)
3 Name (17 bytes)
20 Creator (17 bytes)
37 Version (word)
39 DTVersion (word)
41 <reserved> (8 bytes)
49

Description
BRL instmction to your driver
Pascal string for the driver name
Your name or the name of your company
Driver version (eg. $10 1 = 1.1)
Minimum version of DrawTools (eg. $301 = 3.1)
Zeroes
<your driver goes here>

DrawTools will call your driver with a JSL to the entry point. A = command, X = player N, Y = result of the
command.
B & 0 registers must (natura\ly) be preserved. Place the result in A. Exit with a SEC and RTL.
Tbe conunands for game drivers are: 0 - init driver (called by SetGameDriver, return error code ($6210 or other) or
else 0) 1- GetJoy (y=axis, called by GetJoy) 2 - GetFire (called by GetFire) 3 - StillFiring (called by StillFiring)

How to Create a Net Driver

I. File description: must be stored in DT.Drivers folder in Tools folder of the boot disk. FileType: Generic Load File
(type $BC) AuxType 2.
2. ~ for you driver:

Q.fIli!ll
o
3
20
37
39
41
49

Nrum
EntryPt
Name
Creator
Version
OTVersion
<reserved>

~
(3 bytes)
(17 bytes)
(17 bytes)
(word)
(word)
(8 bytes)

Descrjption
BRL inslmction to your driver
Pascal string for the driver name
Your name or the name of your company
Driver version (eg. $100 = 1.00)
Minimum version of DrawTools (eg $301 = 3.1)
Set to 0
<your driver goes here>

DrawTools will call your driver with a JSL 10 the entry point. A is tbe command, X = data (low), Y = data (high).
B & 0 registers must be preserved. Retum with the result in A, and any data in X,Y. Exit with an RTL.
For the commands, see the reference under SendNetwork. You will need a pseudo game driver for DrawTools to call
when it wants information for a local device. For your game driver, design it to be called like a regular game driver,
except return with a CLC (not SEC) and RTL. This will make sure DrawTools won't send the reb,.lts of the
GetJoy/etc. back to you (posting local events).

DrawTools 3.1 66

Appendix E : Using PicEd 3.0

Besides the library converter utility, there is a utility called PicEd that helps you to create libraries of the
bit-mapped pictures that DrawTools' works with. PicEd was written in TML Pascal II, vI. 1.

When PicEd is started, there is a large grid of 24x24 black blocks to the right of the screen. This is a zoom
(fat pixels) view of the current picture. Using the mouse, you can change the blocks to different colours. While you
are editing a picture, the changes you make are TEMPORARY until you select the EDIT button. This way, if you
make a mistake, you can always revert to the original copy of the picture and start again.

When blocks in the zoom view are changed, these changes are reflected on a series of pictures in the top-left
corner of the screen. The large picture is a view of how the picture would look if it were drawn with the Draw48
call. To the left of this picture are three smaller ones. The one on the far left is drawn with Draw. The One in the
middle is drawn with DrawOn (that is, matted) on a red background. The one on the right is used when animating.

There is a palette of colours to the left of the zoom view. You can change the colour you are sketching
with by clicking on a new colour. The new colour is outlined in black.

Below the palette is a series ofbultons:
QUIT - this stops PicEd. It gives no warnings, so make sure your work is saved.
CLR - clears the zoom view to black.
EDIT - saves the current picture in the library, and selects another for editing
When EDIT is first clicked, PicEd gives you three options: (S)ame - save the current picture to library position it
was edited from; (D)ont - don't save tbe current picture in the library; (N)ew - save the current picture to a new
position. If you pick new, you will be asked for a neW position (0 ... 31).
LOAD - loads a library of pictures from disk.
SAVE - saves a library of pictures to disk. Pressing Return will use the LOAD name as the default.
MASK - calls GenMask to create a simple matting mask. Normally, tWs mask is stored immediately after the
picture it was created for.

The PAL and ANI buttons are special buttons wWcb cause a new set of buttons to appear on the screen.
The PAL (palette) buttons are:
PAL -let's you select one of 16 palettes to use, palette 0 being the default palette of colours used by QuickDraw. If
you change any of the palettes (besides palette 0), the information is saved in the file PicEd.dat, and the palettes will
be reloaded the next time you run PicEd. Some of the palettes are predefined as the 640 colours, the standard IBM
VGA colours, metallic and rainbow colours.
COL - change a colour in the current palette.
FADE - brightens or dims a colour by using the FadeColour tool.
BLND - blends two colours together to produce a third by calling the BlendColour tool.

The ANI (Animation) buttons as as follows:
DONE - you are finished animation. Gets you out of animation mode and restores the other buttons.
SEQ - define an animation sequence. If you want to animate a set of pictures in the current library, select tWs
button, then type in each picture you want to animate, in order. Then type 25S and type in the position in tbe
sequence you want to loop back to (ie. 0 = fmt position, 1 = second, etc). To animate the first 3 pictures over and
over, you'd type: 0 then 1 then 2 then 25S then o.
GOI - animates the sequence you typed in. Hold down the mouse to stop. From left to right, the pictures are drawn:
1) as a matted pixie on a red background, 2) as a pixie that is not matted, 3) as a 48x48 picture (by Draw48).

DrawTools 3.1 67

Appendix F : Using Library Converter 1.2

Lib.Collverter, the library converter, is a utility that lets you translate a picture library template into a DrawTools
picture library. A template is simply a super hi-resolution screen with the 32 pictures of a picture library laid out
for you to edit with any paint program. Keep in mind that the template must he saved as a super hi-resolution
screen and not as one of the other picture tormats, such as Apple Preferred.

COllvert Template to Library." (Command-Oo): Select this to convert a template to a picture library.
Lib.Converter will ask you which template you would like to convert. During the conversion, the template pictures
are displayed on the desktop. Once the template is converted, Lib.Converter will ask you what name you would like
to save the picture library as.

Display a Template ... (Command-Dd): Select this to display the pictures in a template on the screen. 11le colours
may differ from the original template.

Print a Template ... (Command-pp): Select this to print a template to the printer. Lib.Converter uses PrintWindow
to print the entire screen (including the pictures).

Convert SHR Screen to SetBack ... (Command-Bb): Select this to convert a super hi-resolution screen to a packed
super hi-resolution screen, the format used by SetBackground and SetBackground2.

Pack (Conunaod-PP): When Pack is checkmarked, the template you convert with "Convert Template to Library" will
he packed.

DrawTools 3.1

Appendix G : Changes Since DrawTools 3.0

l. New ORCNM macros.
2. CLS now works with a visible cursor.
3. NormalRND no longer returns a tmiform distribution.
4. NEW WorkCursor2: WorkCursor that works with accelerator cards.
5. New QDT Vectors:

#8 -> WaitLine
10 -> Save intemlpt space

6. HLoad waits until a file is not busy.

#9 -> ErasePixie
#11 -> Restore interrupt space

7. HLoad now works with files larger than 64K.
8. Change status cOimnand for fine pixies now works.
9. The library limit has been increased to 24 from 16.
10. Library Converter has been updated to version 1.1. Requires System 6.0.
11. SetOameDriver no longer crashes and it returns error $62FF properly.
12. NEW ErasePixie: A more convenient form of WipeOn.
13. NEW EraseAllPixies.
14. NEW LoadDriver: Loads a game or net driver.
15. NEW UnloadDriver.
16. BarGraph supports 16 colours for the forecolour. if you are using System 6.0.
17. SetNetDriver returns error $62FF properly.
18. NEW SetBackground2: SetBackground with more options.
19. NEW Keypad.Drv .. & Keybrd.Drvr: game drivers for the Apple HOS keyboard.
20. NEW ResetBuffers: Clears the bank 0 drawing buffers.
21. NEW PrintWindow: Print the contents of a window or the screen.
22. New self-mnning Micol Advanced BASIC demo.

68

23. WaitLine is now more accurate: interrupts are suspended to ensure prompt response. (This was the
problem that made Quest for the Hoard™ sluggish when many inits were installed.)

Tool Index (in alphabetical order)

Animate 40 GetPalette 46

AnimatePixie 40 GetPixie 39
GetPixieSeq 39

BruGraph 58 GetQDT 56

BlendColour 48
HidePixie 40

ClearPixie 39 HLoad 58

ClrSCBlnts 50 Home 51

Cis 42 HSave 58
HTab 51

De1SCBlnt 49
DisablePixie 40 IncrFadeOutJIn 43

Draw 34
Dmw48 34 LoadDriver 53

DmwAt 34 LoadUbrary 37

Draw480n 34
Draw48At 34 NewPixie 38

Dmw480nAt 35 NormalRND 57

Dmw Bootinit 30
DmwNormal 33 Odds 57

DrawOn 34
DrawOnAt 35 Print 52

DmwPage 32 PrintHex 52

DrawPos 32 Printint 52

DmwReset 31 PrintWindow 59

DrawShadow 33
DmwStartUp 30 QuickFadeOutJIn 42

DrawStatus 31 QlIickWipe 42

DrawShutDown 30
DmwVersion 30 Ready2Print 51

ReselBuffers 32

EnablePixie 40 ResetSCBs 44

EnableSCBInts 49 ' ResllmeSCBlnts 50

ErasePixie 41 RND 57

EraseAllPixies 41
ExtendBlIffers 32 ScrollLinesL 45

ScrollUnesR 45

FadeColour 48 ScrollLinesU 45

FadeDone 49 ScrollLinesD 45

FadePal 46 SendNetwork 53

FindColour 47 SetBackgrOlmd 36

FindPalette 48 SetBackground2 36
SetBorder 44

GetBorder 44 SetColour 47

GenMask 35 SetCo1Percent 47

GenAllMasks 35 SetDrawPage 33

GetFire 55 SetDrawPos 32

GeUoy 55 SetGameDriver 53

GetMHz 58 SetUbmry 37

GetUbmry 37 SetLTMargins 51
SetNetDriver 53

DrawTools 3.1 70

SetPalette 46
SetPixie 39
SetPixieSeq 39
SetSCBIllt 49
SetSCBs 44
ShowPixie 40
ShadowOff 43
ShadowOIl 43
StillFiring 55
StillWorking 57

UnfadePal 46
UnloadDriver 53
UnloadUbrary 37

VBWipe 42
VTab 51

WaitVB 43
WaitLine 43
WipeOn 36
WorkCursor 57
WorkCursor2 57

