
r~s^»

r

f

The Terrapin
Logo Languagefor the Applell

& 2 ^

UTORIAL
6 ^ ^

r ^ ^ ^

The Terrapin
Logo Language
fortheApplell
UTORIAL

Written by
Virginia Carter Grammer
and
E. Paul Goldenberg

Edited by
Mark Eckenwiler
and
Peter von Mertens

^^m^

Please fill this out for your records:

Name

Address.

Telephone ().

Logo Language Disk #.

Purchase Date

Store Bought

Store Telephone Number.

Salesperson /"^^^\

Terrapin, Inc. gratefully acknowledges the writing and
editing contributions to this tutorial by

Leigh Klotz, Jr.
J. Sheridan McClees
NolaSheffer
Patrick G. Sobalvarro
Deborah G.Tatar
Rena Upitis

Designed by Donna Albano and Janet Mumford

Terrapin Logo mascots designed by Virginia Grammer

Copyright © 1982,1983 Terrapin, Inc.
All Rights Reserved.

" ■ " i

v I M P O R T A N T — P L E A S E R E A D

Welcome to Terrapin™ Logo! The Logo language is an
exciting way of entering the world of computers. There
are all kinds of fun things to do—you can create
graphics, play word games, make music and leam how
to write fascinating programs.

The items that should be included in this package are
listed on page B-l. If you run into a problem, our
customer service department is always here to help.
Our address is: 376 Washington Street, Maiden, MA
02148. You may call us Monday - Friday between 9:00
AM - 4:30 PM EST at: (617) 322-4800.

In the interest of giving Ma Bell and the Post Office less
business, we suggest that you attempt to solve your

^^ problem by consulting the documentation. Many of thei calls we get concern printing; the Printing chapter
should answer most of your questions. The Index and
Glossary of Logo Commands will also serve as handy
resources for you.

In the event that you still require assistance, contact us
and please be prepared to provide us with as much
detailed information as possible about your particular
situation—which version of the language you are using,
the type of Apple® computer system you have
(including printer and type of interface if you have a
printing problem), exactly what the computer does or
says when the problem occurs, whether or not the eventis repeatable, and so on. The more information you can
give us, the better able we will be to answer your
questions and solve your problem.

r^ Backup and Replacement Policy

As a registered owner, you are entitled to one backup of
your Logo language disk. To obtain a backup copy, just

complete the enclosed warranty card and return it to
Terrapin along with a check for $10.00. You need not
send in an order form—save it for ordering books.
Owners of TerraPak-10's and TerraPak-20's are not
eligible for backup Logo Language disks.
If at any time your disk fails to load, you can replace it
for $10.00. Simply return the damaged disk with your
check. (If your Logo Language disk fails within the
first ninety days, it will be replaced at no charge; simply
return the faulty disk with proof of purchase.) Make
sure to include your name and address. We suggest that
all disks be sent via registered mail; we are not
responsible for disks lost in transit to us.
It is important that you return your warranty card
immediately, even if you do not want a backup disk at
this time. (Be sure to keep a copy of your warranty
card or proof of purchase to send along when you do
want your backup disk.) Once you have sent in your
warranty card, you will be placed on our mailing list so
that you can receive a free subscription to the Terrapin
Times, our newsletter of Logo-related news and
information from across the nation and around the
world. Through our mailings, you will also be kept
informed about upgrades and new products as they
become available.

In addition to offering a quality product and superior
customer support, Terrapin also produces a variety of
Logo resources to further enhance your use of the
language. Please examine the Terrapin price list
inserted in the binder's inside pocket. If it is missing,
contact us and we'll be happy to send you another.

~)

Happy adventures with Logo! ""^

/ ^ * \

DISCLAIMER OF ALL WARRANTIES
AND LIABILITY

This software product and the accompanying materials
are sold "AS IS," without warranty as to their perfor
mance. The entire risk as to the quality and
performance of the cqmputer software program is
assumed by the user. The user of this product shall be
entitled to use the product for his/her own use, but shall
not be entitled to sell or transfer reproductions of the
product or accompanying materials to other parties in
any way. Terrapin, Inc. reserves the right to make
improvements in the product described in this manual at
any time and without notice. Neither Terrapin, Inc. nor
anyone else who has been involved in the creation and
production of this product shall be liable for indirect,
special or consequential damages resulting from use of

(~ ^ t h i s p r o d u c t .
COPYRIGHT AND TRADEMARK NOTICES
Portions of the Technical chapter and the Logo software
are copyrighted by the Massachusetts Institute of
Technology. The Tutorial and changes to the Technical
chapter and Logo software are copyrighted by
Terrapin, Inc.
It is against the law to copy, photocopy, reproduce,
translate, or reduce to any electronic medium or any
other medium, in whole or in part, the software and
documentation in this package without prior written
consent from Terrapin, Inc.

Copyright © Massachusetts Institute of
Technology, 1981. Except for the rights and
materials reserved by others, the Publisher and

^^ Copyright owner hereby grant permission without
(^ charge to domestic persons of the United States and

Canada for use of this work and related materials in the

United States and Canada after 1995. For conditions of
use and permission to use materials contained herein or
any part thereof for foreign publication in other than
the English language, apply to the Copyright owner or
publisher. Publication pursuant to any permission shall
contain an acknowledgement of this copyright and an
acknowledgement and disclaimer statement as follows:
This material was prepared with the support of National
Science Foundation Grant No. SED-7919033.
However, any opinions, findings, conclusions, or
recommendations expressed herein are those of the
authors and do not necessarily reflect the views of NSF.
Each school purchasing and putting into use Logo will
make the program object code and accompanying
manuals and teaching guides, if any, available for
inspection by the parents or guardians of the children
who will be using Logo in the school.

Copyright © 1982,1983,1988 Terrapin, Inc.
376 Washington Street
Maiden, MA 02148
(617) 322-4800
Terrapin hereby grants permission in advance to copy
the computer programs listed in the documentation and
on the utilities disk, for personal and archival purposes
only.
Terrapin expressly reserves all rights including without
limitation copyright and trademark, in and to the
Terrapin Logo mascot figures as represented herein, or
from any other perspective.
Terrapin, the Terrapin turtle logo, Logo PLUS and the
Terrapin mascots are trademarks of Terrapin, Inc.
Apple, Apple IIGS, Image Writer, and ProDOS are
registered trademarks of Apple Computer, Inc.
Grappler is a registered trademark of Orange Micro,
Inc.

^

~ i

CONTENTS

Chapter Titles
Beginning in Logo B-l to B-16
Graphics G-l to G-91
Computation: Handling Numbers C-l to C-26
Words and Lists W-l to W-116
Music M-l to M-14
Printing P-l to P-14
Utilities U-l to U-46
Technical T-l to T-49
Appendix A-l to A-112

Error Messages A-l
^ ^ E d i t M o d e A-14
(Strategies for the Graphics Projects A-18

Miscellaneous Tips A-78
Strategies for the Words and Lists Projects A-81

Logo Command Glossary L-l to L-28
Index 1-1 to 1-12

Table of Contents
BEGINNING IN LOGO
Y o u r T e r r a p i n L o g o P a c k a g e B - l
T h i s T u t o r i a l B - 2
Overview: What Can You Do With Logo? B-3
G r a p h i c s B - 4

^ ^ C o m p u t a t i o n B - 5(^ W o r d s a n d L i s t s B - 5
M u s i c B - 5

Terrapin Logo Tutorial

Table of Contents

^

B e f o r e Y o u B e g i n B - 5
S t a r t i n g L o g o B - 6
W h e n L o g o H a s S t a r t e d U p B - 7
R e c o v e r y P r o c e s s B - 8
U s i n g t h e K e y b o a r d B - 9
U p p e r c a s e a n d L o w e r C a s e B - l l
P r e p a r i n g a B l a n k D i s k B - l l
C o p y i n g D i s k s B - 1 4
S t a r t i n g L o g o : S u m m a r y B - 1 6

GRAPHICS
G r a p h i c s M o d e G - l
Driving the Turtle: FORWARD (FD), BACK (BK), ^

R I G H T (R T) , L E F T (L T) G - 2)
L e t L o g o D o Y o u r A r i t h m e t i c G - 5
An Easy Way to Repeat Yourself: <CTRL> P G-5
The Screen: DRAW, NODRAW (ND), TEXTSCREEN

(<CTRL> T), SPLITSCREEN (<CTRL> S),
F U L L S C R E E N (< C T R L > F) G - 7

T u r t l e - d r i v i n g P r o j e c t s G - 8
Color: PENCOLOR (PC) and BACKGROUND (BG) G-8
T h e M a g i c o f P E N C O L O R 6 : E r a s i n g G - l l
I n t r o d u c t i o n t o P r o c e d u r e W r i t i n g G - 1 2
P r i m i t i v e s v s . P r o c e d u r e s G - 1 2
N a m i n g a P r o c e d u r e G - 1 3
Writing a Procedure: EDIT Mode: TO, END,

< C T R L > C , < C T R L > G G - 1 4
R u n n i n g a P r o c e d u r e G - 1 9
Planning and Drawing Your Favorite Square G-21
P r o j e c t s : S i m p l e P r o c e d u r e s G - 2 5 ^]
W h a t g o e s I n t o a P r o c e d u r e G - 2 5

i i T e r r a p i n L o g o T u t o r i a l

Table of Contents

More Primitives: REPEAT, CLEARSCREEN (CS),
HOME, PENUP (PU), PENDOWN (PD) G-26

P r o c e d u r e P r o j e c t s G - 2 8

Saving Procedures: CATALOG, SAVE, POTS G-29
Clearing the Workspace, Reloading Procedures: READ,

GOODBYE, ERASE (ER), ERASE ALL (ER ALL),
E R A S E F I L E G - 3 2

Selective Uses of SAVE, PO, ERASE (ER), and EDIT (ED) . G-34
Saving, Reading and Erasing Pictures: SAVEPICT,

R E A D P I C T , E R A S E P I C T G - 3 5
The Invisible Turtle: HIDETURTLE (HT),

S H O W T U R T L E (S T) G - 3 7
Summary of Logo Commands Used So Far G-38
More About the Editor: Arrow Keys, <CTRL> P,

<CTRL> N, <CTRL> O, <CTRL> A, <CTRL> E,
(^ < C T R L > D , < C T R L > X , < C T R L > Y G - 4 0

S u m m a r y o f E d i t i n g C o m m a n d s G - 4 1
P r o j e c t s U s i n g S h a p e s G - 4 2
Listing a Procedure: PRINTOUT (PO), <CTRL> W G-43
S u m m a r y o f L i s t i n g C o m m a n d s G - 4 4
H e a d i n g : A M a t t e r o f S t a t e G - 4 4
C o p y i n g a P r o c e d u r e G - 4 6
A M a g i c N u m b e r G - 4 6
P r o j e c t s : M o r e S h a p e s G - 4 8
Introduction to Variables: Procedures That Take Inputs G-48
P r o j e c t s : S i z a b l e S h a p e s G - 5 3
F r o m S Q U A R E t o P O L Y G - 5 3
P r o j e c t s : R e g u l a r P o l y g o n s G - 5 5
A n o t h e r V i e w o f P O L Y G - 5 5

C i r c l e s G - 5 7
> ^ s P r o j e c t s : C u r v e s G - 5 7' " U s i n g S u b p r o c e d u r e s G - 5 8

T e r r a p i n L o g o T u t o r i a l i i i

Table of Contents

Non-stop Procedures: Introduction to Recursion G-61
P r o j e c t s : S i m p l e R e c u r s i o n G - 6 2
Recursion: Changing the Input, WRAP, NOWRAP G-62
P r o j e c t s : C h a n g i n g I n p u t s G - 6 5
S t o p p i n g W i t h S t y l e : I F - T H E N , S T O P G - 6 6
P r o j e c t s : T e s t i n g a n d S t o p p i n g G - 6 9
U s i n g t h e F u l l P o w e r o f R e c u r s i o n G - 6 9
R e c u r s i o n P r o j e c t s G - 7 3

S p e c i a l E f f e c t s a n d N e w U t i l i t i e s G - 7 4
RANDOM Numbers, Numbers from Arithmetic

O p e r a t i o n s , I n p u t s , O u t p u t s G - 7 6
P r o j e c t s U s i n g R a n d o m G - 7 8

Debugging by Printing Values: PRINT (PR) G-79
Debugging Using PAUSE: <CTRL> Z, CONTINUE (CO) .. G-81
N e g a t i v e I n p u t s G - 8 1 / ~ * \
More on Debugging: TRACE, NOTRACE G-83
More About the Turtle: TURTLESTATE (TS),

HEADING, SETHEADING (SETH), TOWARDS G-83
Position When You Want It: XCOR, YCOR,

S E T X , S E T Y , S E T X Y G - 8 5
INSTANT: Logo Turtle Graphics for the Non-reader G-87
M o d i f y i n g I N S T A N T G - 9 1

COMPUTATION: HANDLING NUMBERS
A r i t h m e t i c O p e r a t i o n s C - l
H i e r a r c h y o f O p e r a t i o n s C - 2
Outputs, Integer Operators, Functions: RANDOM,

RANDOMIZE, ROUND, INTEGER, QUOTIENT,
R E M A I N D E R , S Q R T , S I N , C O S C - 4

V a r i a b l e s , G l o b a l a n d L o c a l : M A K E C - 6 ^ m ^
P r o c e d u r e s : T O , E N D C - 8)
Interactive Procedures: LOCAL, REQUEST (RQ) C-10 ^

i v T e r r a p i n L o g o T u t o r i a l

Table of Contents

Bringing Values Out of Procedures: OUTPUT (OP) C-13
Example of OUTPUT and Recursion:

A P r o c e d u r e t o D o E x p o n e n t i a t i o n C - 1 5
Graphing Functions: Sine, Cosine, Tangent, Parabola,

E l l i p s e , S E T X Y, H O M E , D R AW, H T C - 1 9

WORDS AND LISTS
I N T R O D U C T I O N W - l
Interactive Graphics: READCHARACTER (RC),

T O P L E V E L , S T O P W - 4
Projects with RC: Extending QUICKDRAW W-8
Changing the Value of a Variable: MAKE, PRINT (PR) W-9
Projects with MAKE: More Extensions to QUICKDRAW ... W-17
Programs that Interact without Waiting: RC? W-18
Projects with RC, RC?: Extensions to LOOP W-22

C^ INTERACTIVE LANGUAGE
Don't Skip This Section! MEMBER?, EMPTY? W-23
Some Friendly Introductions: SENTENCE (SE),

R E Q U E S T (R Q) , L P U T , F P U T W - 2 5
Interlude: Clearing the Text Screen with CLEARTEXT W-32
Objects: Producing RESULTS as Output,

a n d U s i n g T h e m a s I n p u t W - 3 3
Writing Procedures that Create and Output Objects:

O U T P U T W - 3 6

Making One Procedure's Output into Another Procedure's
Input: OUTPUT (OP), FIRST, BUTFIRST (BF), LAST,
BUTLAST (BL), SENTENCE (SE), WORD W-43

Subprocedures for Cleaner Programming W-46
A Genera l izat ion Using Recurs ion: ITEM W-48
P r o j e c t s U s i n g I T E M a n d R e c u r s i o n W - 5 1
DEFINITIONS AND MODELS

(' Some Important Primitives Used in this Chapter W-52
D e fi n i t i o n s o f Wo r d s a n d L i s t s : C H A R W- 5 6

Terrapin Logo Tutorial

Table of Contents

~)

~)

Details of Programming in Logo: Variables, Passing
Objects, Logo's Way of Understanding Commands,
and Logo's Messages When It Doesn't Understand W-60

H o w L o g o I n t e r p r e t s a C o m m a n d W - 6 7

Using Logo Predicates and Creating New Ones: LIST?,
WORD?, MEMBER?, and the Structure of IF, THEN,
a n d E L S E W - 7 0

P r o j e c t s w i t h P r e d i c a t e s W - 7 4
O r d e r e d R u l e s W - 7 5
P r o j e c t s w i t h P L U R A L W - 7 9
Quiz Programs: More About REQUEST (RQ) W-81
P r o j e c t s w i t h R E Q U E S T W - 8 4
Composing Logo Objects: SENTENCE (SE), WORD,

LIST, FPUT, LPUT, TEST, IFTRUE (IFT),
I F F A L S E (I F F) W - 8 6

An Application of LPUT in Interactive Graphics: RUN W-94
Using the History List: Applying a Command (RUN) to

E a c h E l e m e n t o f a L i s t W - 9 6
P r o j e c t s w i t h H i s t o r y L i s t s W - 9 9
Substituting One Word for Another in a Sentence:

A Procedure with Two Recursive Calls W-100
P r o j e c t s w i t h M a d - L i b s W - 1 0 5
Understanding Language: Searching for Key Words and

Matching Sentences to Templates: ALLOF, ANYOF.... W-106
Projects with Language Understanding W-l 15

MUSIC
P r e p a r a t i o n : R E A D M - l
D u r a t i o n M - 2
P i t c h M - 5
P r o c e d u r e s M - 7
Analyses of the Utilities Disk Music Procedures: STOP, ^^

FIRST, BUTFIRST (BF), THING, WORD, Top Level .. M-l 1)

v i T e r r a p i n L o g o T u t o r i a l

Table of Contents

PRINTING
P r i n t i n g T e x t P - l
P r i n t i n g P i c t u r e s P - 2
Printing Logo Graphics Using Other Programs P-3
U s i n g a n I m a g e W r i t e r P r i n t e r P - 3
The PRINTSCREEN Command (Logo PLUS only) P-4
P R I N T P I C T a n d L A R G E P I C T P - 5
S M A L L C O L O R a n d L A R G E C O L O R P - 7
O t h e r I m a g e W r i t e r P r i n t i n g T i p s P - 8
S C R I B E : U s i n g a S c r i b e P r i n t e r P - 1 0

P r i n t i n g t o a P a r a l l e l P r i n t e r P - l 1
SCREENDUMP: Using a Grappler™ Interface P-l 1

(~ ^ S W E E T - P : P l o t t e r P r o c e d u r e s P - 1 2RSPLOTTER: Procedures for the Radio Shack Plotter P-l4

UTILITIES
A b o u t t h e U t i l i t i e s P r o g r a m s U - l
T h e L o g o P L U S U t i l i t i e s D i s k U - l
T o U s e t h e U t i l i t i e s D i s k F i l e s U - 2
S u m m a r y o f U t i l i t i e s D i s k F i l e s U - 4
E x p l a n a t i o n o f U t i l i t i e s D i s k F i l e s U - 9
Aids to Using Logo
INSTANT: Single Letter Logo Commands U-9
TMOVE: Another Way to Move the Turtle U-10
TEACH: How to Write Logo Procedures Without

U s i n g t h e E d i t o r U - l l

r Music System FilesMUSIC: How to Write and Run Logo Music Procedures U-l3
T W I N K L E : A S a m p l e M e l o d y U - 1 3

T e r r a p i n L o g o T u t o r i a l v i i

Table of Contents

^)

MUSIC.SRC, MUSIC. BIN: An example of
L o g o / A s s e m b l e r I n t e r f a c i n g U - 1 3

Shape Editing Programs
SHAPE.EDIT: How to Change the Shape of the Turtle U-14
T h e L o g o S h a p e E d i t o r U - 1 4
ROCKET, ROCKET.AUX, ROCKET.SHAPES:

Example of User-Defined Turtle Shapes U-22
Demonstration Programs
ANIMAL: A Game that Teaches the Computer About

A n i m a l s U - 2 3
ANIMAL.INSPECTOR: What's in

t h e A N I M A L K n o w l e d g e B a s e ? U - 2 4
DYNATRACK: A Game: the Dynamic Turtle on a

F r i c t i o n l e s s S u r f a c e U - 2 5
I N S P I . P I C T : S a m p l e L o g o P i c t u r e U - 2 6
TET: A Graphics Procedure of Variable Complexity U-26 ^"^)

Useful Tools
ARCS: Variable Radii Arc and Circle Procedures U-27
B E F O R E : C o m p a r i n g W o r d s U - 2 8
CURSOR: Procedures for Character Output Control:

P o s i t i o n , F l a s h i n g , I n v e r s e U - 3 0
P I C K : C h o o s i n g T h i n g s a t R a n d o m U - 3 1
P P R I N T: W o r d W r a p f o r L o n g L i n e s U - 3 2
S T R I N G : M a n i p u l a t i n g Wo r d S e g m e n t s U - 3 3
WAIT: Causing Delays in your Programs U-35

File-Handling Utilities
BIN.TO.TEXT: Converting Binary Files to Text Files U-36
FID: File Management Utility: How to Delete, Rename,

Lock, and Unlock Files, Set Default File Extension U-37
TEXTEDIT: How to Save, Read, Examine,

a n d P r i n t F i l e s C o n t a i n i n g Te x t U - 3 8
D P R I N T: P r i n t i n g Te x t I n t o D i s k F i l e s U - 4 0 ^

v i i i T e r r a p i n L o g o T u t o r i a l

Table of Contents

r

Logo Files for Assembly Language Interfacing U-43
ADDRESSES, AMODES, ASSEMBLER, OPCODES:

Interfacing Logo and the Assembler U-43
Useful and Interesting Memory Locations U-43

TECHNICAL
U s e o f t h e L o g o S y s t e m T - l
M o d e s o f U s i n g t h e S c r e e n T - l
N o n - E d i t i n g C o n t r o l C h a r a c t e r s T - 4
E d i t i n g T - 5
S c r e e n E d i t i n g C o m m a n d s T - 8

U s i n g A p p l e P e r i p h e r a l s T - l 1
C o l o r C o n t r o l T - l l
T h e L o g o F i l e S y s t e m T - l 4

C h a n g i n g t h e T u r t l e S h a p e T - 1 7
B u i l d i n g Yo u r O w n S h a p e Ta b l e s T - 1 7
Assembly Language Interfaces to Logo T-18
. E X A M I N E a n d . D E P O S I T T - 1 9
Writing Your Own Machine-Language Routines T-20
T h e L o g o A s s e m b l e r T - 2 3
E x a m p l e : G e n e r a t i n g M u s i c T - 3 0
U s e f u l M e m o r y A d d r e s s e s T - 3 6
M i s c e l l a n e o u s I n f o r m a t i o n T - 4 2
Using the Logo System as a Text Editor T-42
S e l f - S t a r t i n g F i l e s T - 4 4
V a r i o u s S y s t e m P a r a m e t e r s T - 4 5

APPENDIX
ERROR MESSAGES

(^ P a r t I A - lP a r t l l A - 5

T e r r a p i n L o g o T u t o r i a l i x

Table of Contents

LOGO COMMAND GLOSSARY
INDEX

^

EDIT MODE
Use of Control Characters for Ease in Editing A-14
M o v i n g t h e C u r s o r A - 1 4
M o v i n g t h e T e x t A - 1 5
D e l e t i n g T e x t A - 1 6
R e s t o r i n g T e x t A - 1 6
L e a v i n g E D I T M o d e A - 1 7
STRATEGIES FOR THE GRAPHICS PROJECTS
T u r t l e D r i v i n g P r o j e c t s A - 1 8
P r o c e d u r e P r o j e c t s A - 2 1
P r o j e c t s U s i n g S h a p e s A - 2 4
P r o j e c t s : M o r e S h a p e s A - 3 8
P r o j e c t s : S i z a b l e S h a p e s A - 3 9
P r o j e c t s w i t h R e g u l a r P o l y g o n s A - 4 1
P r o j e c t s : C u r v e s A - 4 4
P r o j e c t s : S i m p l e R e c u r s i o n A - 4 7
P r o j e c t s : C h a n g i n g I n p u t s A - 4 9 / ^)
P r o j e c t s : T e s t i n g a n d S t o p p i n g A - 5 3
R e c u r s i o n P r o j e c t s A - 5 5
P r o j e c t s U s i n g R a n d o m A - 6 5
M a s c o t s : E l e p h a n t , R a b b i t , S n a i l A - 6 8
P r o c e d u r e s f o r S a v i n g P i c t u r e s A - 7 2
D e v e l o p i n g a n A r c P r o c e d u r e A - 7 5
MISCELLANEOUS TIPS
D e b u g g i n g w i t h T R A C E , N O T R A C E A - 7 8
A d d i n g R e m a r k s i n Yo u r P r o c e d u r e s A - 7 9
S w i t c h i n g D i s k D r i v e s : S E T D I S K A - 7 9
Creating Self-Starting Files

U s i n g t h e S T A R T U P V a r i a b l e A - 8 0
R e a d i n g A p p l e L o g o F i l e s A - 8 0
STRATEGIES FOR THE WORDS

A N D L I S T S P R O J E C T S A - 8 1

~ >

Terrapin Logo Tutorial

\EGINNING IN LOGO

/^^^\

- $
Your Terrapin Logo Package

NOTE: This section should be read the first time you
use your Logo package. If you have used Terrapin Logo
before, or have a resource person or teacher helping
you, skip to the next section, titled This Tutorial,
In your Terrapin Logo for the Apple package, you will
find:

1 Logo Language disk
1 Utilities Disk containing demonstration and utility

programs
1 Tutorial (which you are reading) to help you learn

Logo, It will provide you with complete instructions
for printing and using the utilities programs,

^■k technical information, a Glossary and an Index.
1 Quick Reference Card of Logo commands
1 Logo Project Card

In the Logo PLUS package, you will find all of the
above as well as a Getting Acquainted with Logo PLUS
booklet. Note that a 3.5" Logo PLUS disk includes
both the Logo Language and Utilities programs.

In order to use Logo, you will also need:

An Apple II family (Apple II+, lie, lie or IIGS)
or Apple-compatible computer

64K of memory is required for Terrapin Logo
128K of memory is required for Logo PLUS

One or more disk drives
To save your work, you will need a blank disk.

Before using your Utilities Disk, you should make a
^^ backup copy because it is possible to damage or erase
(^ the Utilities Disk accidentally. Instructions for copying

a disk are at the end of this chapter.

T e r r a p i n L o g o T u t o r i a l B - 1

Beginning in Logo

^

^

This Tutorial
This tutorial will teach you how to use Logo. It is
divided into chapters that introduce each of the areas
you will want to explore. The Utilities chapter explains
the use of the sample and utility programs that are on
the Utilities Disk. The Technical chapter contains
information about assembly language interfaces for
Logo and the internal workings of Logo. You need not
read it to start using Logo, but you will find it useful
when you are ready for new challenges.
Once you are comfortable with your Apple computer,
use this tutorial to learn the basics of programming in
Logo. Type in the examples and problems. Think about
what you are doing; expect to go over some sections
more than once.

Logo puts the user in control from the start. In keeping
with that philosophy, this tutorial will suggest but not
dictate. If you are ever really stuck for an idea, see the
Appendix. It contains examples of all the ideas sug
gested. In fact, after you try things on your own, look
through the Appendix for new ideas, tips and tricks.
In this tutorial you will meet three Logo mascots, all
drawn with Logo. The elephant marks things to

A~ remember. The rabbit points out neat tricks, short cuts,
^̂ %^ and quicker ways of doing things. Go slow and be
^^_ careful when you see the snail. It calls attention to

warnings and possible problems. The procedures that
draw the mascots are listed in the Appendix.
We have occasionally put some information between
pairs of colored bands on the page. It is not necessary to
read this information your first time through the ymm^^
tutorial, but you will find it helpful when you return ^)
and want further explanations of specific sections.

B - 2 T e r r a p i n L o g o T u t o r i a l

Beginning in Logo

Overview: What Can You Do with Logo?

Logo is a procedural language. Each procedure is a
group of one or more instructions, which the computer
can store for reuse. These instructions can be either
Logo commands or procedure names. When you have
written a procedure to do a task, you can use it in any
other procedure you write, without having to rewrite its
instructions in that procedure, chain to it, or link it, as
you would with other languages.

Logo's strong appeal to schools derives from this struc
ture as well as its underlying educational philosophy. Its
simple and open environment encourages a discovery
approach to learning. Logo actively involves the student
in the learning process, so that the student teaches the
computer. Educators attest to the fact that students who
use Logo gain a new excitement about learning. The
Logo language gives them an opportunity to explore
problem-solving, creativity, higher order thinking
skills and mathematical reasoning in a unique way.

Terrapin offers educators not only the Logo language
for a variety of microcomputers, but also a series of
curriculum materials designed to help teachers integrate
Logo into their standard curriculum. With products
such as Logo Works: Lessons in Logo, The Logo
Project Book, Logo Data Toolkit and Logo Probability,
students can explore math, language, social studies and
science using Logo as a tool.

In Logo, you build a system of procedures the way you
build your own knowledge base, with new procedures
and knowledge building on what already exists. This
leads to clearer, more structured thinking and

/•n programming, in contrast to the development of one
long, complicated procedure (program) which is
common in some other languages.

T e r r a p i n L o g o T u t o r i a l B - 3

Beginning in Logo

- ^

Logo is what is known as an interpreted language. Logo
commands produce immediate results. Logo can either
execute a command immediately (called IMMEDIATE
Mode) or you can use commands in procedures, which
can be stored and used as often as you want. Changing
or correcting (editing) a procedure is simple in Logo.

If you are familiar with other languages, you will be
delighted with the lack of distinction between system
commands, Logo commands, and procedures. This is
perhaps the most unusual aspect of Logo, and one of the
most powerful, from the user's standpoint. Any
command you can type to Logo can be used within a
Logo procedure, and Logo procedures can even be
written to edit themselves.

You can begin to use all of the different types of ^^
commands immediately. As you advance in your ^)
programming skills, you will gradually discover the
vast possibilities Logo offers you.

Graphics

Using Logo graphics, you can draw lines and turn in
any direction. With its simple commands you may
create figures and drawings of great complexity. In
Logo, you do not have the tedious task of figuring point
to point coordinates, although Logo can tell you the
coordinates at any position.

An introduction to Logo graphics comes first in this
tutorial because you need no experience to be able to use
these commands. Using the single-letter commands in
the INSTANT system, pre-schoolers can create Logo
graphics. At the other end of the intellectual spectrum,
university professors use Logo to introduce computer ^k
science and develop concepts in higher mathematics and)
physics.

B - 4 T e r r a p i n L o g o T u t o r i a l

Beginning in Logo
y ^ ^ ^ \

Computation
In addition to the ordinary mathematical computations
all languages can handle, Logo's built-in ability to do
recursion, which allows a procedure to use itself as a
subprocedure, makes it easy to do computations not
possible in languages such as BASIC and FORTRAN.
You will meet recursion in each of the areas of Logo
described in this overview. For a description of
mathematical computation, see the chapter titled
Computation: Handling Numbers.
Words and Lists

Logo's facility with words and lists makes it ideal for
writing conversational programs, quizzes, pig-Latin
translators, programs that teach, and even programs

f^ that learn: in short, all programs that need to manipulate lists of information.

Logo's unique list-processing capabilities give you
power over words that is impossible to match in non-list-
processing languages such as BASIC, FORTRAN, and
Pascal. See the chapter titled Words and Lists for what
Logo can do and what you can do with it.
Music

Logo makes it easy for you to write tunes and pieces of
tunes, or play games with pitch, time, and sequencing of
phrases. You can even define your own musical scales,
using Logo commands as building blocks. See the
chapter titled Music for details.

Before You Begin
r*^ It is possible to run Logo without a storage or data disk
^^ in the disk drive, but you would not be able to save your

T e r r a p i n L o g o T u t o r i a l B - 5

Beginning in Logo

The computer will display information on the screen
and the disk drive light will go on. It takes about 20
seconds to load and start Logo. (Since Logo PLUS has
many additional features, it takes a bit longer to load

work. We encourage you to prepare a blank disk for
storing the programs you will be writing.
A blank disk, unlike an audio cassette tape, must be
prepared before it can store information. This process
is called initializing (or formatting) the disk. Follow
the instructions at the end of this chapter for formatting
a blank disk.
After the disk has been formatted, remove it from the
disk drive, label it immediately, and use it to store your
Logo procedures. We will refer to it again in the
section When Logo Has Started Up later in this chapter.

Starting Logo
One of the disks packaged with your system is called the
Language Disk. It is the disk with the Logo language on /*mm\
it. The other disk, labeled Utilities Disk contains some
demonstration and utility programs. They are
mentioned where appropriate throughout the tutorial
and discussed in detail in the Utilities chapter.
With the Apple turned off,

1. Place the Language Disk in your disk drive with the
label facing up and closest to the front.

2. Close the disk drive door firmly.
3. Turn on the monitor.
4. Turn on the Apple. The on-off switch is on the back

at the left as you face the machine.

B - 6 T e r r a p i n L o g o T u t o r i a l

Beginning in Logo

/e^^\

than Terrapin Logo for the Apple.) If Logo does not
seem to load properly, check to be sure that you are
using the Language Disk and that the disk drive door is
firmly closed.
When it has started, Logo will display the greeting

WELCOME TO LOGO

If Logo does not start up after about one minute, your
Language Disk may be damaged in some way, or your
disk drive may need adjusting. If other disks work on
your disk drive, the problem is most likely with your
Language Disk or a card you may have installed in your
computer that contains extra memory. If you do not
have sufficient memory in your computer to load Logo,
you will see a message to that effect.
When Logo Has Started Up

Logo will print its WELCOME TO LOGO message anda ? when it is ready for you. The ? is called a prompt,
prompting you to respond with a Logo command. The
flashing box is called the cursor. It shows you where the
next character you type will appear. Whenever the
cursor is flashing, Logo is waiting for you to type
something.
(This would be a good time to remove the Logo Lan
guage Disk from the disk drive, put it in a safe place,
and replace it with the blank disk you have initialized
and will be using to store your Logo procedures.)

You give Logo directions by typing commands at the
keyboard. Logo reads what you have typed when you

J> press the <RETURN> key. Pressing <RETURN> isf^ like saying "Do it." Nothing will happen until you press
<RETURN>.

(r *

T e r r a p i n L o g o T u t o r i a l B - 7

Beginning in Logo

^

^

NOTE ON POINTED BRACKETS: When you see
pointed brackets < > around a word, press the key on
the keyboard with that word on it. Do not spell out the
word. When you see <CTRL> C, hold down the
<CTRL> key and type the letter C. (The abbreviation
<CTRL> is used for the <Control> key.) Think of the
<CTRL> key as a different kind of <SHIFT> key.

SPECIAL NOTE: Nothing you type can harm the com
puter or Logo. Even the worst that can happen is not
too bad: pressing the <CTRL> and <RESET> keys at
the same time while using Logo may take you out of
Logo and mean the loss of work you have not yet stored,
but it will not harm Logo or the computer. Much of the
time you can recover your work after an accidental
reset (see below). Don't be afraid to try things.

Recovery Process

To recover from a system reset or a Logo bug that
leaves you with an asterisk (*) at the bottom of the
screen, first type <CTRL> Y <RETURN> (hold down
the <CTRL> key and tap <Y>, then press <RETURN>).
Then type <CTRL> G <RETURN>. Usually this will
put you back into Logo. If it does not, turn the machine
off and start Logo according to the four-step Starting
Logo: Summary at the end of this chapter.

When Logo does not understand something you have
typed, it will try to help you by typing out a message.
Most of the time you will have no trouble figuring out
what is wrong, but when you need assistance, turn to the
list of Error Messages and their explanations (with
examples) in the Appendix.

~)

/* *^^»K

B - 8 T e r r a p i n L o g o T u t o r i a l

r

/ ^ ^ .

Beginning in Logo
K M ^ J K J d i l l

KEYBOARD DIAGRAM

]00
10000000000

00000000000

B O O

00000
0 0 0 0 K

mm
! • \ r e t u r n

shift

0 0000
The Apple IIGS Keyboard

Using the Keyboard
BEFORE YOU BEGIN: If you are using an Apple lie,
He, or IIGS, the <ESC> and <DELETE> keys can both
be used for deleting backwards, one character at a time.
If you have an Apple II or II+, you will delete back
wards using the <ESC> key, which we will call
from now on. In addition, you will need to use
<SHIFT> N to print a left bracket ([), and <SHIFT> M
to print a right bracket (]).

Use the following editing keys to correct typing errors.
The key moves the cursor to the left and erases
the character there. The left- and right-arrow keys
move the cursor in the direction they point on the
keyboard. Any letter, number, or symbol that you type
will appear exactly where the cursor is blinking, even if
you have used the arrow keys to move the cursor backinto the text. The letters under and after the cursor will
move to the right to make room. Try typing this line:
MARY HAD A LITTLE LAMB

Terrapin Logo Tutorial B-9

Beginning in Logo

^

/ ^ ^ ^ ^ ^ k

Use the (or <ESC>) key to erase the last
character. Try it a few times. Move the cursor back
several letters using the left-arrow key. Notice that this
does not erase the letters it travels over. Change the line
to read:
GARY HAD A LITTLE LAMB
GARY HAD A LITTLE HAM
GERTA HAD A LITTLE HAM SOUP
GERTA HAD XVP26 A LITTLE HAM SOUP

Finally, change it back to
MARY HAD A LITTLE LAMB

See how typing characters in the middle of the line
makes the rest of the line move over to make room?
You can never accidentally type on top of other ^^\
characters and cause them to be erased.

Press <RETURN> now. Logo will try to understand the
whole line as a series of commands. Since the words
MARY HAD A LITTLE LAMB are not Logo
commands, Logo will tell you so. Type MARY again.
Tell Logo to ignore what is typed with <CTRL> G (be
fore you press <RETURN>). To do this, hold down the
<CTRL> key and press the <G> key. (Remember, the
<CTRL> key is like a special <SHIFT> key which is
always used with another key.) Logo will print
STOPPED! and a new prompt. Typing <CTRL> G is
the usual way to stop whatever Logo is doing.

CAUTION: At any time, you can exit Logo by turning
the machine off; however, by doing so, you will lose all
your work unless you have saved it on the disk. You are
also likely to lose your work if you press the <RESET> /4^^\
key and have to restart Logo. Use <CTRL> G to stop

B - 1 0 T e r r a p i n L o g o T u t o r i a l

Beginning in Logo

(

programs; stay away from the <RESET> key. But be
sure to try the recovery process outlined above if you
do press <RESET>.

Upper Case and Lower Case

The Apple He, lie and IIGS, unlike the Apple II and II+,
come with the built-in ability to type both upper- and
lower-case characters. You can instruct Logo to print
text in both upper and lower case on the screen or on
paper.

Terrapin Logo commands must be entered in upper
case. Be sure to put the <CAPS LOCK> key (in the
lower left comer of the keyboard) in the down position.

/mms If you are using Logo PLUS, however, you can type
(commands in either upper or lower case. Logo PLUS

will then convert the commands you enter in lower case
into upper case for its own use.

Preparing a Blank Disk
In order for a disk to be able to store information, it
must first be formatted or initialized. Once the disk is
formatted, the computer will be able to read files from
it into the computer's memory, save files to it, display a
listing of the files that are on it, and so on.
Think of the formatting process as similar to that of
painting lines on a newly-paved parking lot. Eachdifferent brand of computer or operating system needs
to have lines painted in a different way because each
stores information in a unique way. During the
formatting process, parking lines are painted on the

f"^ disk, so to speak, so that the computer can "park"
information in an organized way.

T e r r a p i n L o g o T u t o r i a l B - 1 1

Beginning in Logo
/ " " ^ ^ ^ k v

Terrapin Logo is based on the DOS 3.3 operating
system and Logo PLUS is based on the ProDOS
operating system. Thus, the method of formatting disks
differs between the versions. The following two
sections explain how to format a disk for use with each
version of the Logo language.

Make sure that a blank disk is in the disk drive when the
formatting process begins. When a disk is formatted,
any information that exists on the disk is permanently
erased. You can reuse a disk by formatting it again.

Note that you can transfer files from DOS 3.3 disks to
ProDOS disks using the Convert program (described in
the Getting Acquainted with Logo PLUS booklet) or the
ProDOS User's Disk that came with your computer.

F o r m a t t i n g D i s k s f o r L o g o P L U S ^ *)
1. Place the Logo PLUS Language Disk in the disk

drive and turn on the computer.

2. When the turtle picture is displayed on the screen,
hold down the <Closed-Apple> or <Option> key on
your keyboard until you see the message "Loading
accessories...." After a few moments, you will see
the Accessories Menu on the screen.

3. Press 1 to select the first option, 1 - Format a disk.
Then you will enter the slot and drive of the disk you
want to format. Press <RETURN> if your disk
drive is connected to slot 6 inside the computer;
otherwise enter the appropriate slot number.

Press <RETURN> to accept 1 as the drive where the
blank disk will be placed; otherwise, press the
a p p r o p r i a t e d r i v e n u m b e r . ^ ~ * \

B - 1 2 T e r r a p i n L o g o T u t o r i a l

Beginning in Logo

4. Place a blank disk in the drive you have specified.

5. Type a new disk (or volume) name that is 15
characters or less.

6. The disk in the drive you have selected will now be
formatted.

Formatting Disks For Terrapin Logo
To initialize a blank disk, you can use your Terrapin
Logo for the Apple Utilities Disk or any other disk that
has already been formatted.

1. Place the Terrapin Logo Utilities disk in the disk
drive and then turn on the computer.

2. When the red light on the disk drive goes out,
remove the Utilities disk from the disk drive and put
it away in a safe place for future use.

You can ignore the following message, which is
displayed on the screen:
TERRAPIN LOGO FILES DISKETTE
THIS DISKETTE CONTAINS LOGO
PROGRAMS.
YOU MUST BE RUNNING LOGO ON
YOUR APPLE TO USE THESE PROGRAMS.

3. Place the blank disk you want to initialize into the
disk drive.
WARNING: Be sure to remove the Utilities Disk
from the disk drive and replace it with a blank disk
before proceeding. When you type the INIT HELLO
instruction, the disk in the disk drive will be erased.
DO NOT TYPE INIT HELLO with your
Utilities Disk still in the disk drive.

R-T '■$
Terrapin Logo Tutorial

Beginning in Logo

/ * ^ ^ ^ ^ v

4. With the blank disk in the disk drive, type

INIT HELLO

and press the <RETURN> key. The disk drive will
whir for almost a minute, then the Apple prompt (])
will appear on the screen and the light will go out on
the disk drive. Your disk is now initialized.

Formatting Tips:
You will probably find it convenient to format a
number of disks at the same time, no matter which
method you are using. Be sure to label the disk as soon
as you have formatted it. For ProDOS disks, include
the volume name on the label for easy reference.

C o p y i n g D i s k s ^ ^
It is wise to make copies of your Utilities Disk and the
disks on which you store your programs. Disks can fail
for any number of reasons (dirt, magnets, heat, old age,
etc.), and when they fail, it is typically without warning.
Although disk failure is not a common occurrence, you
should be prepared for the event.

Your Logo language disk can also fail. If it does so
within the first ninety days after purchase, Terrapin
will replace it without charge. Replacement disks after
the initial time period are $10.00. One backup disk is
also available to you for $10.00 and proof of purchase
(warranty card or sales slip).
You can use either of the following methods to copy
DOS 3.3 disks (for use with Terrapin Logo) or ProDOS
disks (for use with Logo PLUS). Both programs will
c o p y e i t h e r t y p e o f d i s k . ^ " ^

B - 1 4 T e r r a p i n L o g o T u t o r i a l

Beginning in Logo

/^^N

Method #1 - Using the ProDOS Users Disk

1. Place the ProDOS User's Disk in the disk drive and
turn on the computer.

2. At the opening menu, press <F> to select PRODOS
FILE (UTILITIES).

3. Then press <V> to select VOLUME COMMANDS.

4. Finally, press <C> to select COPY A VOLUME.

5. Enter numbers for the slot and drive of the disk to
copy and the slot and drive of the blank disk. (Press
<RETURN> at these prompts to keep the number
that the computer is already displaying.)

6. Press <RETURN> to allow the computer to read the
volume name from the disk you are copying. (DOS
3.3 disks will have the volume name NON-PRODOS
DISK.) Press <RETURN> to keep the volume name
that is displayed or enter a new volume name. The
copy will now be made. If you have just one disk
drive, be prepared to swap disks in the disk drive a
number of times.

Method #2 - Using the DOS 33 System Master

1. Place the DOS 3.3 System Master in the disk drive
and turn on the computer. You will see a] prompt
sign on the screen.

2. Type RUN COPYA and press <RETURN> to load
and start the copy program. Make sure that you type
this instruction in upper case letters.

3. Enter numbers for the slot and drive of the disk to
copy (original) and the slot and drive of the blank

T e r r a p i n L o g o T u t o r i a l B _ 1 5

Beginning in Logo

disk (duplicate). (Pressing <RETURN> will keep
the number that the computer is already displaying.)

4. Press <RETURN> to begin the copy. If you have
only one disk drive, you will swap disks in the disk
drive several times before your copy is complete.
Pay attention to which disk should be in the disk
drive at all times.

Using Either Method:
These methods first format the blank disk and then copy
the contents of the original disk to the blank disk. Be
sure to make a label for your new disk, and include the
volume name of ProDOS disks for easy reference in the
future.

'-.? ^irafi'.. Rhftt

i^>S&fe" ''tiZMm wm

Vw&■''̂ŝJ■■>•• * .

message,, remove fa£;̂ rig0£fi Disk ana
insert a disk that h9s^f(^fQ^4ttQ^v-s&-^t

. you pziii save ypurworlc. ''"%"" ' ..".
4. You are ready to proceed with Logo.

B-16 Terrapin Logo Tutorial

est

it1

- @

GRAPHICS

^tm^

Since this tutorial is written for our reading
constituency, we have placed the section
describing INSTANT for non-reading users at
the end of the Graphics chapter.

Logo puts the user in control from the start. In keeping
with that philosophy, this tutorial will suggest but not
dictate. If you are ever really stuck for an idea, see the
Procedures section of the Appendix. It contains exam
ples of all the ideas suggested. In fact, after you try
things on your own, look through the Appendix for
new ideas and tips and tricks.

Graphics Mode
Enter the graphics or DRAW mode by typing DRAW:

DRAW

and press the <RETURN> key. (Remember, pointed
brackets around a word refer to a key, not a word to be
typed.)

A drastic change occurs on the screen; the command
you have just typed and all other commands will dis
appear. A small triangle will appear in the middle of
the screen, and the prompt will be in the lower left
region of the screen.

Logo is now in DRAW mode. The bottom four lines of
the screen are reserved for commands you will type
and the rest of the screen is drawing space.

G-l

Graphics
i-*<&t.'w&i^

~)

Splitscreen and T\irtle I\irtle Enlarged

The small triangle in the middle of your screen is
called the turtle. When it first appears, it is pointing
upward. You can tell where it is heading by the black
bar that runs across its back.

Dnivimg A® Ituurftle: FOEWAEB (FD)
EACK(EK)9 BIGHT (RT), LEFT(LT) ~)

You move the turtle with turtle commands. The turtle
can leave a trail as it moves, allowing you to produce a
picture.

1

? FD 100

\

~)

G-2 Terrapin Logo Tutorial

Graphics

r^

FORWARD always moves the turtle in the direction it
is pointed. Type

FORWARD 100 <RETURN>

or the short equivalent

FD 100 <RETURN>

The turtle will move forward one hundred turtle steps.
The space between the command and the number is
necessary. If omitted, Logo will assume the whole
thing to be a procedure name. (Try FDlOO without the
space.)

If you leave out the number that FORWARD is expect
ing, or the space, or do something else that Logo does
not recognize, Logo will try to help you by printing an
error message. These are usually self-explanatory, but
if you cannot figure out what is wrong, turn to the
Appendix where error messages are interpreted with
examples.

To make the turtle turn, type the direction of the turn
and the number of degrees:

RIGHT 90 <RETURN> or RT 90 <RETURN>

^ ^ \

>

? FD 100

? R T 9 0

Terrapin Logo Tutorial G-3

Graphics

~)

You told the turtle to turn right 90 degrees (a quarter of
a circle). If you type RIGHT 90 again, the turtle will
point straight down.

Type

LEFT 90 <RETURN> or LT 90 <RETURN>

From now on, we'll assume you know to press the
<RETURN> key after a command.

The turtle will turn in place 90 degrees to its left. Try
moving the turtle around yourself. Type BACK (or BK)
with a number of steps.

To clear the screen and start over, type DRAW. DRAW ^^
^> erases whatever picture is on the screen and takes the

turtle to its starting position. Use DRAW whenever
you want to start a new picture.

Play with the turtle some more.
(1) Try some odd distances and turns, such as

FD87
RT43
FD26
LT141
FD 59

(2) Draw a square
(3) Try a triangle

^

G - 4 T e r r a p i n L o g o T u t o r i a l

Graphics

/™"^* \

/^^\

Get familiar with the turtle commands. Use the com
mands or their abbreviations:

Command Abbreviate

FORWARD FD
BACK BK
RIGHT RT
LEFT LT

Let Logo Do Ymr Arithmetic

Whenever Logo expects a number (we call this number
its input), you can give it an arithmetic expression to
evaluate to get a number. Logo will do the arithmetic
for you.

Type and Logo figures

F D 1 0 * 5 F D 5 0
R T 1 0 0 / 3 R T 3 3 . 3 3 3 3 . . .
F D 5 + 5 F D 1 0

This is useful for both accuracy and precision: the
computer will not make a mistake, and the computer
will make a division like 100/3 quite precisely.

Ah Emy Way to Repeat Yourself: <CTEL > P

You can put as many commands on the same line as
you want, as long as you separate them with spaces.
When you have typed a line and pressed <RETURN>,

T e r r a p i n L o g o T u t o r i a l G - 5

Graphics

r
Logo will repeat the line for you if you press
<CTRL> P. (Hold down the <CTRL> key and press
the <P>). Type

FD 50 RT 30 FD 20 RT 115<RETURN>

Logo draws the line. Type

<CTRL> P Logotypes

FD 50 RT 30 FD 20 RT 115

You press <RETURN> to do it.

a. Type <CTRL> P <RETURN> as many times as you
H>cT wish; each time Logo will print and execute the line.

If you put a space at the end of your original instruc
tion, you may also type

<CTRL> P <CTRL> P <RETURN>

This will print out two sets of your instructions. You
can repeat the <CTRL> P as many times as you wish,
up to 129 characters (9 characters more than 3 lines), as
long as there are spaces between the commands. If you
have no space at the end of the line, and type
<CTRL> P twice, you will get

FD 50 RT 30 FD 20 RT 115 FD 50 RT 30 FD 20 RT115

If there is no space at the end of the line when you type
another <CTRL> P (as in the line above), the last com-

^

~)

G - 6 T e r r a p i n L o g o T u t o r i a l

^ • \

Graphics

mand of the first batch will not be separated from the
first command of the second, and Logo will stop and
say

THERE IS NO PROCEDURE NAMED 115FD

You can add a space after you type the <CTRL> P, but
an easier way to insure a space is to put it there when
you type the line (RT 115 <SPACE> <RETURN>).

The Screen: DRAW, NODRAW(ND),
TEXTSCREEN(<CTRL> T), SPLITSCREEN
(<CTRL>S)9 FULLSCREEN(<CTRL> F)
When Logo is in DRAW mode, the Apple displays four
lines of text at the bottom of the screen. To see the com
mands you have typed that have disappeared under
the picture, type

TEXTSCREEN or <CTRL> T

Remember that you must hold the <CTRL> key down
while you type the T.

Try typing

<CTRL> T

To get back the split graphics/text screen, type

SPLITSCREEN or <CTRL> S

To show off your drawing without the distracting text,
type

FULLSCREEN or <CTRL> F

T e r r a p i n L o g o T u t o r i a l G - 7

Graphics
i

<CTRL> S will bring back the split screen from either
the text or fullscreen.

/ O " 1 ^ ^ ^ ,

To clear the screen and leave DRAW mode,
type NODRAW, abbreviated ND. Type ND
<RETURN> right now.
Type DRAW again to do some graphics projects.

Tmrtle-dirivMg Projects

1. Determine how many turtle steps it takes to get to
the top edge of the screen.

2. Determine how many turtle steps from the bottom
edge of the screen to the top. From the left edge to
t h e r i g h t . ^ • s

3. (Tricky one) How many steps from the lower left ■'
corner of the split screen to the upper right corner?

4. (Trickier still) How many from the lower left corner
of the full screen to the upper right?

5. Try each of the commands with a negative number.
(Example: FORWARD -100) How else could the
turtle make the same move?

6. Can you draw a square? A rectangle?
7. Can you draw your initials?

Color: PENCOLOR (PC) and
BACKGROUND (RG)

The turtle has six pencolors and six background colors,
plus a switching so-called color that reverses the color
it passes over. The colors are numbered from 0 to 6.

G - 8 T e r r a p i n L o g o T u t o r i a l

Graphics
/ ^^ \

Here are the colors and numbers for a black back
ground (BGO):

C o l o r N u m b e r

Black 0
White 1
Green 2
Violet 3
Orange 4
Blue 5
Reverse 6

The PENCOLOR (or PC) primitive takes the number of
/~\ the color as input, and sets the turtle's pencolor to that

color. Try typing

DRAW
PC 4
LT45
FD 50
RT90
FD 50

To change the background color, type BACKGROUND
(or BG) and the number. BG1 gives a white back
ground. BG1 PC 0 will give you a black pen on a white
background. Try typing

BG 5
RT135
FD 62

T e r r a p i n L o g o T u t o r i a l G - 9

Graphics
ZZ3

The Apple computer color system determines the use
of background colors. Blue and orange, for instance,
do interesting things when exposed to violet and
green. Combinations which will work as you expect:

NCOLC)R on BACKGROUND draws

4

4
5
5

2

3
2
3

green on green
(erases)
green on violet
violet on green
violet on violet
(erases)

2 4 orange on orange
(erases)

2
3
3

5
4
5

orange on blue
blue on orange
blue on blue (erases)

In addition, changing the background color after a
picture is drawn may change some of the lines in pecu
liar ways. Returning to the original backgound color
restores the picture.

To see the effects of the different combinations, set a
background color and draw some lines in each of the
different colors. Change the background color and do
it again.

On a black and white screen, colors 2-5 take on differ
ent textures, but black and white remain the same as
always.

~ i

/ * ^ ^ ^ K

G - i o T e r r a p i n L o g o T u t o r i a l

Graphics

Logo draws thick lines to obtain clear colors on the
Apple. On a black-and-white monitor, for thin white
lines on black, use BG 6 and PC 1 through 5. PC 0 is
black. (On a color monitor, these lines will not be uni
formly white: vertical lines will be red or green, de
pending on their position.)

The Mmglc ofPENCOLOE 6: Ermsimg

PC 6 changes black to white and white to black when
turtle tracks cross. This means that the turtle can erase
a line by going back over it with PC changed to 6. To
see how it works, type

FD100
^ p c 6

BK 100

Now is the time to see one of the amazing effects you
can create.

Type

PC 6
LT2
FD 3000

Vary the turn and the distance forward for different
effects. Try starting the turtle at the edge of the
screen...

T e r r a p i n L o g o T u t o r i a l G - n

Graphics
/̂ ^̂ .̂

~)

Something to Try After You Read the
Procedures Section

To see the effect of PC 6 with a non-stop pro
cedure, choose one that never takes the same
track twice. Clear the screen, hide the turtle,
set your pencolor to 6, the reversing color,
type the name of your procedure, and hit
<CTRL> F so you can watch on the full
screen:

DRAW HT PC 6 (procedure name) <CTRL> F

Introduction to Procedure Writing
Now that you know how to drive the turtle around and
make shapes, we will proceed to giving your shapes
names which will become new turtle commands. You
will be able to type BOX and get your box picture back,
or SQUIGGLE to draw your squiggle.

To do this, you will write procedures.

A procedure is a series of commands which you design
to achieve a specific purpose. The commands may be
composed of procedures and/or Logo primitives.

LOGO COMMANDS

PRIMITIVE: a command that Logo has already been
taught

PROCEDURE: a command that you teach Logo ^.

G - 1 2 T e r r a p i n L o g o T u t o r i a l

G>

Graphics
/^^"\

^m*^

Think of the PRIMITIVES as the core of the world of
PROCEDURES you will write.

FORWARD, BACK, LEFT, RIGHT, DRAW, and NO-
DRAW are Logo primitives. You used the primitives by
typing their names, with numbers if they required
them. To use a procedure, you do the same.

NmmiMg m Procedmre

Type

MOVE <RETURN>

Logo tells you

THERE IS NO PROCEDURE NAMED MOVE

Logo is saying that it does not recognize the word you
typed as either a Logo primitive or a procedure name.
It does not know how to do that command.

Terrapin Logo Tutorial G-13

Graphics

^

"> MOVE
THERE IS NO PROCEDURE NAMED MOVE

The name of a procedure is the single word that you
type to tell Logo to perform the series of commands in
the procedure.

Since you choose the name, select one that

1. Reminds you of what the procedure does
2. Is easy to remember
3. Is easy to type
4. Will not be confused with another name

~)

Writing a Procedure: EDIT Mode: TO, END,<CTRL> C, <CTRL> G

To write a procedure, start with the name. The tutorial
will use the name MOVE, but you may use your own.

We tell Logo that we're about to write a new procedure
by writing TO and the name of the procedure. For
example, type:

TO MOVE

When you press <RETURN>, the screen will change:
Logo will clear the screen and print the words

^

G-14 Terrapin Logo Tutorial

Graphics

TO MOVE on the first line. Now Logo is in EDIT mode.
The cursor will be at the beginning of the next line. At
the bottom of the screen there will be a white line with
black letters. It always says the same thing:

EDIT:CTRL-C TO DEFINE,CTRL-G TO ABORT

S ^ * \

Gh. This reminds you that you are in EDIT mode, and tellsy you the two ways to get out of it: <CTRL> C to Com
plete the job and <CTRL> G in which any changes
you have made in EDIT are Gone.

EDIT mode is very different from IMMEDIATE mode.
In IMMEDIATE mode, Logo does the commands that
you type (like FORWARD or RIGHT) as soon as you
press the <RETURN> key. In EDIT mode, Logo waits
for you to define a whole procedure; that is, to write a
series of commands that will constitute the new proce
dure.

Terrapin Logo Tutorial G-15

Graphics ■£&&&
~)

TO (Procedure Name)

IMMEDIATE
MODE

DRAW NODRAW

<CTRL> C

While you are in the editor you write the procedure. To
use it, you must first get out of the editor by typing
<CTRL> C, which puts you back into IMMEDIATE
mode. (But don't do this yet.)

When you are using the editor, you can use the right
and left arrows to move the cursor and
(<ESC>) to erase the character at the left of the cursor,
just as you can in IMMEDIATE mode.

Type a line of text to practice. For example, you might
type

FORWARD 33
RIGHT 55

(or their short versions:)
FD33
RT55

Press the

<RETURN>

^

G-16 Terrapin Logo Tutorial

/ • ^ ^ x

s^m\

s » ^

Graphics

key. Note that it moved the cursor to the next line. In
fact, <RETURN> is just another character to the editor:
you can even erase it with the (<ESC>) key.
Press

 (<ESC>) and then the
<RETURN>

key again to see this. Press

 (<ESC>)

until the whole line under TO MOVE goes away. (You
can use the <REPT> (repeat) key on the Apple 11+ in
conjunction with (<ESC>) to delete several
characters very quickly.)

(See the Appendix and the Technical chapter for a
discussion and summary of some other editing com
mands.)

Now type a series of commands, alternating FOR
WARD or BACK with RIGHT or LEFT. Remember to
include the number of turtle steps or degrees, and to
press <RETURN> after each.

For your first time through this tutorial, type either
version of MOVE:

TO MOVE TO MOVE
FORWARD 100 FD100
RIGHT 15 RT15
BACK 80 BK80
RIGHT 25 RT25

T e r r a p i n L o g o T u t o r i a l G - 1 7

Graphics
^* ;*#M8£w^'&lF\

~)

TO MOVE
FORWARD 100
RIGHT 15
BACK 80
RIGHT 25

Look over your procedure to be sure that
(1) the commands are spelled correctly,
(2) that you have used zeros in your numbers and not

the letter O (zeros have slashes through them on
the Apple), and

(3) that there are spaces between the commands and
the numbers.

Use the arrows and the (<ESC>) key to fix
*? errors. Use <REPT> (repeat) with the arrows to move

the cursor quickly. When you finish your repairs, leave
the cursor where it happens to be. Logo, unlike other
languages, does not require the cursor to be at the end
of the listing or even at the end of a line when you
leave the EDIT mode.

The white line at the very bottom of the screen tells
you the two ways of exiting from the editor and return
ing to IMMEDIATE mode.

Press <CTRL> C.

Logo will Complete your procedure definition: it will
return you to IMMEDIATE mode, and will remember
your procedure MOVE while you stay in Logo. It will ^\
confirm that it has read in your program by saying

G-18 Terrapin Logo Tutorial

MlK^m^

Graphics
i

MOVE DEFINED

If instead, you type <CTRL> G, your work done in
EDIT mode will be Gone: Logo will return you to IM
MEDIATE mode without accepting the work you did
in EDIT. <CTRL> G stops Logo, whatever it is doing.
Logo will confirm this state of affairs with

STOPPED!
?

Note above that Logo types PLEASE WAIT...
then MOVE DEFINED

followed by the prompt ?
(The wait occurs when you write a long pro-

//**s cedure. You will not notice the wait with a
short procedure like this.)

Congratulations! You have written your first procedure.
You have taught the turtle a new command. But wait!
It's not time for congratulations yet. Does it work? You
must try it.

RmniniMg an Procedure

Type

MOVE<RETURN>

Just as typing the name of a primitive makes Logo do
it, typing the name of a procedure makes Logo do what
that procedure says to do. This is called RUNNING or
EXECUTING the procedure.

T e r r a p i n L o g o T u t o r i a l G - 1 9

Graphics

If you have typed a word incorrectly within your proce
dure, Logo will try to help you by printing an error
message. If you cannot figure out what the problem is,
see the Appendix, which explains error messages with
examples.

To make a change in your procedure, reenter the EDIT
mode by typing TO and the name of your procedure.
To change MOVE, type

TO MOVE

The screen will look as it did just before you left EDIT.
Logo confirms that you are again in EDIT mode with
the white line at the bottom of the screen.

Make your changes using the arrows and
(<ESC>) key, then exit EDIT with <CTRL> C. You are
DEBUGGING your procedure (removing errors, called
BUGS).

Run your procedure by typing its name. And now...
Congratulations! It should look like the picture above.

~ i

G-20 Terrapin Logo Tutorial

/ ^ * \

Graphics

Type MOVE again. The turtle will begin at the place it
finished and will go in the direction it was pointing.
You can also add to the shape on the screen by driving
the turtle around with individual commands such as
RIGHT 12 or FORWARD 55, but these commands will
not be included in the procedure.

You may put as many commands on a line as
you wish; separate them with spaces and
press <RETURN> at the end of the line to
run them. If you run over the end of the line,
Logo will continue on to the next line. (In
EDIT mode, Logo puts an exclamation point
to remind you that the line is continued).

CAUTION: In IMMEDIATE mode, Logo will
do commands until it sees something it does
not recognize. If one of the first commands on
a long line of commands is misspelled, it will
stop there and you will have to retype the
incorrect one and all that came after it.

PMmmmg mmd Draiiwmmg Yomr Fmworite Sqmmre
Procedures like MOVE draw somewhat random de
signs. Drawing a specific shape requires more specific
thought about the sequence of commands you will
write.

Example: Define a procedure called SQUARE which
will draw a square.

T e r r a p i n L o g o T u t o r i a l G - 2 1

Graphics
/ " ^ ^ ^ v

Decisions you must make:

The number of
1. steps on a side (your choice)
2. degrees to turn at the corner (Aha!)
3. times to do a side and/or turn (Hmmm)

Things to remember (always):

• Correct spelling of commands
• Space between command and number
• Use zeros in numbers, not the letter O
• Press <RETURN> after each line
• Begin with the name:

(for this one, type TO SQUARE)
• E n d y o u r p r o c e d u r e w i t h E N D ^ " " ^

(Logo will put END in for you if you forget it. The only
time it is definitely needed is when you define more
than one procedure in the editor at the same time.)

• Exit the editor with <CTRL> C
(C for Complete)

Analysis:

Decision 1: From your turtle-driving projects, you
have a good idea of the size of the screen. Choose a
number considerably less than half, so that you can
use your square in larger pictures. (Draw your pro
posed square on the screen with a felt tipped water
based pen and make the turtle trace it.)

G _ 2 2 T e r r a p i n L o g o T u t o r i a l

■=**

Graphics

< ^

Decision 2: Only one specific number of degrees will
work here; if you don't know what it is, try a few before
you begin on SQUARE.

Decision 3: No doubt you know how many times you
need to do the side and how many times you need to
turn to draw a square. We will discuss other options
later on.

/*mm^\

SQUARE

Defining SQUARE:

To teach Logo the new command SQUARE, type

TO SQUARE

You are now in EDIT mode. Type in the commands
you need, as you determined above. If you make mis
takes in typing, use the arrow keys and
(<ESC>) to correct them. If the mistake is not on the
line with the cursor, you must move the cursor to that
line to correct it.

Exit from EDIT mode with <CTRL> C (C for Com
plete).

Terrapin Logo Tutorial G-23

Graphics
-■■ . - . . ^

(Forgive the repetion of (C for Complete); we just don't
want you to lose any of the work you have done in
EDIT as you would with <CTRL> G (G for Gone...))

Type SQUARE to run it. Move or turn the turtle and
run it again, and again. Notice that the turtle draws the
square from wherever it happens to be, and starts off
on the first side in whatever direction it is heading.

Now for a trick or two. You certainly don't
want to spend the rest of your life typing
SQUARE when you could obtain the same
results typing SQ. (Would you want to have
to type the whole word FORWARD all the
time?) You created the procedure SQUARE ^mm^^
using Logo primitives such as FD, BK, LT,)
and RT. Now you can create a procedure SQ
using the new Logo command, the procedure
name SQUARE.

Using the editing techniques you have
learned, write a procedure SQ that looks like
this:

TOSQ
SQUARE

END

Clear the screen with DRAW and run SQ.
Clear it again with DRAW and run SQUARE.
You should get the same results with both.
Now any time you want to draw a square,
type either SQ or SQUARE.

G - 2 4 T e r r a p i n L o g o T u t o r i a l

Graphics

/ * ^ \

SQ and SQUARE can also be used in proce
dures any time you wish, and as many times
as you wish, just like the Logo primitives.

Projects: Simple Procedures
Write several of your own procedures. Choose appro
priate names, but do not use the name MOVE as we
will be using that again later.

What goes Into a Procedure

Any command you can type at the keyboard, as well as
any procedure you have written, can be used in a pro
cedure. Some commands have two versions: one is a
word spelled out at the keyboard and the other uses
the <CTRL> key plus a letter. Use the word in a proce
dure; the <CTRL> version is only for convenience at
the keyboard.

X ^ ^ \

SUMMARY OF COMMANDS USED SO FAR
THAT HAVE A CONVENIENT KEYBOARD
VERSION

Procedure Version

TEXTSCREEN
SPLITSCREEN
FULLSCREEN

Keyboard Version

<CTRL> T
<CTRL>S
<CTRL>F

Terrapin Logo Tutorial G-25

Graphics

More Primitives: REPEAT, CLEARSCREEN
(CS), HOME, PENUP (PU), PENDOWVN (PD)
The Logo command REPEAT saves you the work of
typing a command or series of commands more than
once. You tell Logo the number of times you wish to
repeat, and enclose the command(s) to be repeated in
square brackets.

Try these examples:

REPEAT 4 [FD 23]
REPEAT 3 [FD 30 RT 60]
REPEAT 8 [FD 65 RT 135]
REPEAT 20 [RT 50 FD 15 RT 60 FD 10]

As you will recall, when you type <CTRL> P, Logo ^)
will retype the previous line for you. You press
<RETURN>, and Logo will execute it.

To repeat MOVE 24 times, type

REPEAT 24 [MOVE]

If the turtle starts in the middle of the screen, the de
sign created by repeating MOVE will go off the edge
(and appear on the opposite side). To avoid this, move
the turtle before starting the design. 100 steps to the
left and 100 steps down turn out to be a good starting
point for MOVE, determined by examination and ex
perimentation. Find a good starting point for your
procedure.

G - 2 6 T e r r a p i n L o g o T u t o r i a l

Graphics

To walk the turtle to its starting point for MOVE, type

LT 90 FD 100 LT 90 FD 100

r
The turtle is there, but it is pointing down. To head it
in the right direction to start MOVE, type RT 180.

Now, what about the track it left? (If you type DRAW to
get rid of the track, you will also send the turtle home.)
To keep it where it is as Logo clears the screen, type
CLEARSCREEN (or CS). Now try that REPEAT line
with MOVE.

DRAW is a combination of CLEARSCREEN, SHOW-
TURTLE (explained later), and HOME, the command
that moves the turtle to the center of the screen and
turns it to point straight up. Walk the turtle around
some, then type HOME to see what happens.

/^fev

Terrapin Logo Tutorial G-27

Graphics

There is another way to move the turtle without leav
ing a trace. Tell it to pick up its pen with PENUP (PU)
before you start, and to put it down with PENDOWN
(PD) when you get there. The line would be

PU LT 90 FD 100 LT 90 FD 100 RT 180 PD

The turtle arrives ready to draw, without leaving
tracks.

The names of the primitives PENUP and
PENDOWN come from the robot floor turtle
which has the ability to pull its pen up and
not draw or put it down and draw.

P r o c e d u r e P r o j e c t s)

1. Write a setup procedure to move the turtle to its
starting point without leaving a track.

2. Write a procedure using REPEAT which draws a
design with MOVE.

3. Write a procedure to draw a four-sided figure.
4. Write a procedure to draw a rectangle.
5. Use your setup and rectangle procedures to draw a

rectangle where MOVE began.
6. Write a procedure using REPEAT that repeats the

sequence of drawing a shape with one of your shape
procedures and then turns the turtle (then draws
the shape and turns...)

~)

G - 2 8 T e r r a p i n L o g o T u t o r i a l

Graphics

SmwMg Procedures: CATALOG, SAVE, POTS
You have created a procedure which Logo will remem
ber as long as you do not exit Logo or turn off your
Apple. To be able to turn the computer off without
losing your work, so that you may be able to use these
procedures another day, you must ask Logo to SAVE
them on a Logo file disk. Use a file disk prepared ac
cording to the instructions in the section titled Prepar
ing a Blank Disk.

When you use the SAVE command, every procedure
in your workspace is saved in a file on your disk. Your
workspace is like your desktop. You do your work
here, sometimes creating new material, sometimes

/^ bringing copies of files out of the drawers. When you
finish for the day, you go to the copying machine, make
a copy for the file, and file the copy away. Everything
you are currently working on is on your desktop (in
your workspace). This may include many procedures.
When you want to save the contents of your workspace
(desktop), use SAVE to transfer a copy of it to the disk
(desk drawer).

You can use and change procedures only when they
are in your workspace, not on the disk. When you are
happy with your changes, or finished for the session,
you store a copy of the workspace contents back as a
file on the disk.

The SAVE command copies the entire contents of your
workspace into a file on the disk. Just as your proce
dures have names, the collection of procedures in your

^"^ workspace, which will be saved in a file, must have a
name too, to distinguish it from your other files. Since

T e r r a p i n L o g o T u t o r i a l G - 2 9

Graphics

^

you choose the name for the group of procedures in
the file, it is a smart idea to choose a file name that tells
you what they are. The file name SHAPES might be
useful for the first group of procedures you will be
writing as you go through this chapter.

Type

SAVE "SHAPES

The double-quote character immediately preceding
the word is a crucial part of the file name. You cannot
omit it. If you try to store your workspace without it,
nothing will be saved, because Logo does not recognize
it as a file name without the quote character. If you try
to read a file without it, Logo will not find the file.

The quote distinguishes other types of names from
procedure names. There is no space between the quote
character and the word.

WARNING: You can have only one file per file name.
Therefore, for the time being, use a new file name each
time you save your workspace (such as SHAPES,
SHAPES1, SHAPES2). (The Appendix includes more
details about saving procedures.) If you had already
had a file called SHAPES, the contents of the old file
would be erased, replaced by the present contents of
your workspace.

If you had nothing in your workspace (which is the
case every time you turn on the computer, before you
read a file or write a procedure) and typed SAVE
"SHAPES, Logo will print out a message telling you •—k
there is nothing to save. But if you had one item in

G _ 3 0 T e r r a p i n L o g o T u t o r i a l

/^^\

s m ^

/^^^\

Graphics

your workspace, Logo would still save the entire con
tents of your workspace, even though it is almost
empty, and the file "SHAPES would be replaced by a
copy of the almost empty workspace. The old file
"SHAPES on the disk would be gone.

This would be like taking a blank book with only a
title page to the copying machine, copying it, and re
placing your old files in the drawer with the copies of
the blankpaper.

To see the names of the files you have saved on your
disk, type

CATALOG

Everything on the disk will be listed, including the
HELLO file which was put there during the initializa
tion process, which must stay there although you will
never need to use it again. Each Logo file will have
your file name followed by .LOGO. For example, the
new entry SHAPES.LOGO will appear on the list.

To print out the titles of your procedures in your work
space, type

POTS

To print out the commands in a procedure, type PO
(procedure name) i.e.

PO BOX

T e r r a p i n L o g o T u t o r i a l G - 3 1

Graphics
W^^MP^^.^MM^y^< ",;^ > :**i;xWZ\±.v_ * ■■r̂r- ."-.&- "A»J- •*■•*'■■. ̂K&Vî ff''-:?̂ ' ̂ .̂ sffiffî l

^

Command

CATALOG
POTS
PRINTOUT or PO

SUMMARY

Purpose: Lists
Files on disk
Procedure titles
Procedure commands

Example

CATALOG
POTS
PO BOX

Clearing the Workspace, Reloading Procedures: READ, GOODBYE, ERASE (ER),
ERASE ALL (ER ALL), ERASEFILE
You may reload procedures into your workspace at
any time. The most usual time might be when you
begin a new session with Logo, but there will be times
when you wish to add the contents of another file to
what is already in your workspace. To list on the screen
the files which are saved on your disk, type CATALOG,
as before. To reload the procedures from your file
SHAPES.LOGO,type

READ "SHAPES

The red light on the disk drive will go on, the disk will
whirr, and the computer will print out the name of
each of your procedures in your file SHAPES and
confirm that it has been read into your workspace by
printing DEFINED. For instance,

MOVE DEFINED

^

G-32 Terrapin Logo Tutorial

r^ ■ Ê&fts>iJwtf3tagK-. < K̂ i-*̂ A'̂ 7̂ .̂u,̂ *̂ f-------i*̂ ̂ ttSifeffiMfeffEffl'K Graphics

/*^^\

A word of warning: if you have changed MOVE in
your workspace, the version read in from the disk wilj
wipe out the one in your workspace. If you want to
keep both versions, rename the one in your workspace
using EDIT, before you read in the file. You can change
the name in EDIT mode just as you change a command.

To store them all back in SHAPES, type

SAVE "SHAPES

SAVE 'FILENAME

WORKSPACE

READ "FILENAME

There will be times when you want to clear your work
space, particularly when you want to shift gears and
read in another file. If you want to save your current
work, save it first.

To clear your workspace, type

ERASE ALL

/ H ^

Terrapin Logo Tutorial G-33

Graphics

It is always possible to erase whole files from a disk.
The command which does this is ERASEFILE. For
example, to permanently delete a file called JUNK,
type

ERASEFILE "JUNK

to Logo. Always double-check to see that you're not
erasing a file you want to keep.

Selective Uses of SAVE, PO, ERASE (ER), and
EDIT(ED)
Certain Logo primitives can take a list of procedures as
input instead of just one procedure name. For instance,
typing

PO [SPIRAL SQUARE TRI]

will produce a screen listing of all three procedures.
Likewise, typing

ER[TRI SQCIR]

will erase all three procedures. In this case, the option
of giving ERASE a list as its input is convenient but not
crucial; the same effect could be achieved by typing

ER TRI ER SQ ER CIR

Using an extra input list with SAVE or EDIT is a bit
more powerful, as it allows you to do things not
otherwise possible.

^

^

G - 3 4 T e r r a p i n L o g o T u t o r i a l

/^^ \

/ ' • • N

/"^^s

Graphics

Suppose you had two similar procedures, TRI and
TRI2, and wanted to edit them together. You could
type ED ALL, but then every procedure would appear
in the editor; also, TRI and TRI2 might not be together.
A simpler approach would be to type

ED [TRI TRI2]

SAVE normally puts all existing procedures into a new
file. However, by using an input list you can save a
selected list of procedures. If you have several proce
dures in your workspace and want to SAVE only a few
of them, you can type something like

(SAVE "FIGURES [SQTRI STAR])

The parentheses are necessary in order to tell Logo to
expect an extra input.

Saving, Reading and Erasing Pictures:
SAVEPICT, READPICT, ERASEPICT

Logo can store complicated pictures on your
disk and read them back in much less time
than it takes the procedure to draw them.
However, there is a tradeoff in disk space. The
procedure might take 1 block of disk storage
space. The picture will occupy 34 blocks.
Only you can decide when this is worthwhile.

To save a picture (whatever is on the drawing
part of the screen at the time), assign it a
name. We shall use DANCER. To save the

T e r r a p i n L o g o T u t o r i a l G _ 3 5

Graphics
m & V b ' t t Z v r l f x v . - * - - ' ■ ' f ' M i ^ g ^ ^ ^ P ^ ^ ^ i f ^ M ^ - ,

picture part of the screen on the disk under
the name DANCER, type

SAVEPICT "DANCER

The name you choose can be any name you
care to give it. It does not have to be the same
name as the procedure that drew it, but it
could be. The picture can be the result of
running one or several procedures (without
clearing the screen between), or driving the
turtle around, or a combination. Everything
on the picture part of the screen except the
turtle is stored with SAVEPICT.

To recall a stored picture (remember, this one
will be listed on the disk as DANCER.PICT),
type

READPICT "DANCER

To remove the picture from the disk forever
(not just from the workspace), type

ERASEPICT "DANCER

In each case, use the double-quote character
before the first character of the name.

G - 3 6 T e r r a p i n L o g o T u t o r i a l

/ C ^ \

Graphics

The MwMble Turtle: HIDETURTLE (HT),
SHOWTURTLE (ST)

There are two situations in which you might want the
turtle to become invisible.

1. To get it out of the way of your picture either during
the drawing or after the picture is completed.

2. To speed up the drawing of a picture (the invisible
turtle draws faster).

To tell the turtle to become invisible, type

HT (or its long form) HIDETURTLE

To tell it to reappear, type

ST or SHOWTURTLE

Except for being invisible, the hidden turtle works
exactly the same as the visible turtle. In particular, it
draws when its pen is down and leaves no trace when
its pen is up.

T e r r a p i n L o g o T u t o r i a l G - 3 7

Graphics

Summary of Logo Commands Used So Far

TURTLE COMMANDS

C o m m a n d A b b r e v i a t i o n

FORWARD FD
BACK BK
LEFT LT
RIGHT RT
HOME
PENUP PU
PENDOWN PD
HIDETURTLE HT
SHOWTURTLE ST
PENCOLOR PC
BACKGROUND BG

SCREEN COMMANDS

Command Abbreviation

CLEARSCREEN cs
DRAW
NODRAW ND
TEXTSCREEN <CTRL> T
SPLITSCREEN <CTRL> S
FULLSCREEN <CTRL> F

G-38 Terrapin Logo Tutorial

^

/ f ^ ^ \

r

y ^ m ^

Graphics

FILE COMMANDS

READ ERASEFILE
SAVE
SAVEPICT
READPICT
ERASEPICT

PENCOLORS on BG 0

PCO Black
PC1 White
PC 2 Green
PC 3 Violet
PC 4 Orange
PC 5 Blue
PC 6 Reverse

Commands used in all Logo domains (Graphics, Music,
Computation, etc.):

TO ... REPEAT CATALOG
END <CTRL> P POTS

ERASE
R E A D E D I T PO
SAVE <CTRL> C

<CTRL> G

<CTRL> P, <CTRL> C, and <CTRL> G are keyboard
instructions which cannot be used in pro<:edures.

Terrapin Logo Tutorial G-39

Graphics

More About the Editor: Arrow
<CTRL> P, <CTRL> N, <CTi
<CTRL> A, <CTRL> E, <CTi
<CTRL> X, <CTRL> Y

In EDIT mode, you will want to move the cursor
around the screen in order to make changes and
additions. The following keystrokes will help you do
this easily.

Use the four arrow keys to move the cursor in the
direction of the arrow. Pressing an arrow key will not
affect the text that the cursor passes over. Use the left
and right arrow keys to move the cursor over charac
ters that are on the same line. Use the up and down
arrow keys to move the cursor from line to line.

If you are using an Apple II+, use <CTRL> P to move ^"^
up to the Previous line (up on the screen), and <CTRL>
N to move down to the Next line (down on the screen).

To Open up a space to insert a new line, type

<CTRL>0 (the letter O)

No matter where the cursor is on the line, the rest of the
line will be moved down to the next line, but the cursor
will stay put.

To move the cursor to the beginning of the line, type

<CTRL> A

To move the cursor to the end of the line, type

< C T R L > E — s

G - 4 0 T e r r a p i n L o g o T u t o r i a l

Graphics

To Delete the character under the cursor, type

<CTRL> D

Note that this is the opposite of the key which
deletes to the left of the cursor.

To kill a line from the cursor to the end, type

<CTRL>X

To Yank back the last line killed, type

<CTRL>Y

Other editing commands are described in the Appendix
and in the Technical chapter.

SUMMARY OF EDITING COMMANDS
MOVING BACKWARD MOVING FORWARD

1 character
End of line
Adjacent line

Left arrow
<CTRL>A
<GTRL>P
or Up arrow

Right arrow
<CTRL>E
<GTRL>N
or Down arrow

DELETING B ACKWARD DELETING FORWARD
1 character
Line

 (<ESC>) <CTRL>D
<CTRL>X

FOR EASY INSERTION OF A LINE
Open line <CTRL>0

RESTORING DELETED TEXT
Line <CTRL>Y

T e r r a p i n L o g o T u t o r i a l G - 4 1

Graphics

Projects Using Shapes
1. Write a procedure (using SQ or SQUARE) that

puts a square in each corner of the screen. (Hint:
remember PENUP?)(Don't forget PENDOWN)

2. Write a procedure that draws a row of squares.
3. Write a procedure that draws a tower of squares.

(Hint: use your row of squares procedure in it)
4. Write a procedure that draws a leaning tower of

squares, (use your tower procedure)
5. How about a window with four panes?
6. Write a different procedure to draw the same size

square as SQUARE.
7. Using the same sort of analysis used in developing

the SQUARE procedure, figure out how you would
draw a triangle whose turns are all the same size, ^)
then write the procedure.

8. Try #1-4 using triangles.
9. Write procedures to use your 4-sided (not a square)

figure to make designs.
10. How about a window with 6 triangular panes?
11. Write a different procedure to draw the same size

triangle.

Since all your new procedures (and old) are in your
workspace, you can safely save them all in SHAPES by
typing SAVE "SHAPES.

~)

G _ 4 2 T e r r a p i n L o g o T u t o r i a l

Graphics
/ ^ * N

Listing a Procedure: PRINTOUT (PO),<CTRL>W

Just as you can print out titles using POTS, you can
also PRINTOUT the list of commands in any proce
dure. Type

PO (procedure name)

to list the commands in any procedure in your work
space. Type
PO (procedure name)

to list any other procedure in your workspace. PO pro-
/«p*\ vides a handy, quick way to check on a procedure, but

to make changes in it, you must get into EDIT mode as
described before. Type

PO ALL

to scroll by the listings of all the procedures in your
workspace. Use

<CTRL> W(W for Wait)

to stop the scrolling; each <CTRL> Wyou press after
you stop the scrolling will move one line onto the
screen. You may inspect the titles one by one with more
<CTRL> Ws, or resume the scrolling by pressing an
other key.

To printout a selected list of procedures, type

^ P O [P R 0 C 1 P R 0 C 2 . . .]

T e r r a p i n L o g o T u t o r i a l G - 4 3

Graphics

SUMMARY OF LISTING COMMANDS

Command Result

CATALOG Lists names of files on disk in
disk drive

POTS Lists names of procedures in
workspace

P O (p r o c e d u r e n a m e) L i s t s c o m
mands in named procedure

PO ALL Lists entire contents of
workspace

<CTRL> W Wait: computer waits for an
other key to be pressed: press
<CTRL> W again for line by
line inspection, or any key to
r e s u m e s c r o l l i n g . I ^ , " % \

Heading: A MmMer of State
It is possible that when you closed your square and
triangle, you finished your procedure with FD and did
not follow it with a turn. This left the turtle heading in
the direction the last side required. This makes it
handy to draw successive figures in new positions, but
it leads to confusion when you want to use the shape
in another procedure.

It is generally good programming practice to leave the
turtle in the same state in which you found it. The
state of the turtle is its position and heading. It is al
ready in the original position, since you closed the
figure. All that is required is to turn the turtle so that it
is heading in the original direction. This means one ^.
more tu rn , the same s ize as the o ther tu rns .)

G - 4 4 T e r r a p i n L o g o T u t o r i a l

/̂ ^̂ *\
Graphics

Consider these three procedures:

TOSQ TO SUPER
FD30 REPEAT 8 [SQ RT 45]
RT90 END
FD30
RT90 TO STRANGE
FD30 REPEAT 4 [SQ]
RT90 RT45
FD30 REPEAT 4 [SQ]

END END

Both SUPER and STRANGE draw the same
design (although they draw the parts of the
design in a different order).

Note that the last turn in SQ, the one that
would turn the turtle back to its original head
ing, is omitted.

If you edit SQ now to add a RT 90 at the end,
SUPER will still draw the same design (in yet
a new order), but STRANGE will not.

This may seem odd at first because we have
not changed STRANGE. However, we DID
change the procedure STRANGE uses.

To counteract the effect of adding the RT 90
at the end of SQ, we would have to insert a
LT 90 immediately after SQ in each procedure
that uses it.

Terrapin Logo Tutorial G-45

Graphics

This kind of fix is not always so easy. For
example, if the newly introduced extra was a
line instead of a turn, it would be harder (in
some contexts, impossible) to counteract its
effect.

So it is best to leave the turtle heading as it
started. This will eliminate many interface
bugs (puzzling things that must be fixed in
order to use one procedure after another).

Copying a Procedure
Your procedures SQUARE and TRIANGLE may now
need another command added to them to turn the ^-^
turtle to its original heading. But you have used)
SQUARE and TRIANGLE in other procedures; chang
ing them now would spoil the procedures that use
them. Take heart; change SQUARE, but give the new
version a new name, such as SQUAREl. While in EDIT,
change the name slightly (it can be edited like any
other part of the procedure), then move down and add
the new command. Voila. You now have your original
procedure plus a slightly altered copy under a new
name.

A Magic Number

Now for a rather basic question: how far around did
the turtle turn when it drew the square that left it in
the same state that it started from (same position and
heading)? (Add up the turns.) How far around did the
turtle turn when it drew the triangle that left it in its ^-^
o r i g i n a l s t a t e ?)

G - 4 6 T e r r a p i n L o g o T u t o r i a l

Graphics

You have just discovered a great truth: the turtle will
turn the same amount to get back to its original head
ing, no matter how it goes. The total amount of the
turn, adding the turns in one direction and subtracting
if it turns the other way, will be the magic number you
just discovered. (Of course, if it goes one way and then
cancels the turn out completely by going the other
way, the total turn will be 0, but it will not have trav
eled completely AROUND anything, either.) This is
called The Total Turtle Trip Theorem: if the turtle
travels around an area, no matter what shape, and
ends in the same place that it started, heading in the
same direction, it always turns the same amount.

You can use the magic number to make shapes with
any number of sides. To see the relationship between
the magic number and the turns you made in the
square, divide the magic number by the number of
turns. Let Logo do it for you. On the computer, where
we cannot type one character above another on a single
line, we use the slash (/) (on same key as the ?) for
division. To divide 10 by 5, type

10/5

Logo will reply

RESULT: 2

Remember, when Logo requires a number, it can use
the result of an arithmetic operation, so you can also
use this division as the number required by the Logo
primitives FD, BK, LT, and RT. For example,

T e r r a p i n L o g o T u t o r i a l G - 4 7

Graphics

Command Equivalent

F D 1 0 0 / 2 F D 5 0
R T 3 0 0 / 3 0 R T 1 0
B K 2 0 0 / 4 B K 5 0
L T 3 6 0 / 4 L T 9 0

Projects: More Shapes
1. Using REPEAT and division in your turn command,

write another procedure that draws a square.
2. Using REPEAT and division in your turn command,

write another procedure that draws a triangle.
3. Using REPEAT and division in your turn command,

write a procedure that draws a 5-sided figure.
4. Write a procedure that draws a 6-sided figure. ^^^
5. Write a procedure that draws a 7-sided figure. ^)
6. How about a 15-sided figure?

Introduction to Variables:
Procedures That Take Inputs

DRAW does the same thing each time it is used. FOR
WARD is more flexible; it moves the turtle different
distances depending on its input.

INPUT is the specific term for the number required by
commands like FD, BK, LT, and RT. (Later you will
also see INPUTS which are not numbers.)

So far your procedures have always done the same
thing each time they were used, but it is possible to
write procedures which use some input to tell them,
for example, how much to move the turtle.

^

G - 4 8 T e r r a p i n L o g o T u t o r i a l

JttiVigM3i?fr'-
Graphics

X " ^ * N

/ n p ^

It would be nice to have a BOX procedure which draws
different sized squares, just as we have a line procedure
(FORWARD) which draws different lengths of line.

We would expect BOX 10 to produce a small box and
BOX 100 to produce a larger box. To describe what
happens more fully, we might say:

To draw a box of some dimension,
we go forward that dimension,
turn right 90 degrees,
go forward that dimension,
turn right 90,
forward that dimension,
right 90,
forward dimension,
right 90

and that's it.

The Logo translation of the English is very similar:

TO BOX DIMENSION
FD DIMENSION
RT90
FD DIMENSION
RT90
FD :DIMENSION
RT90
FD DIMENSION
RT90

END

T e r r a p i n L o g o T u t o r i a l G - 4 9

t y

Graphics

Or, we could have said:

To draw a box of some dimension,
we must, 4 times, go forward that dimension
and turn right 90 degrees.

which translates into Logo as

TO BOX [DIMENSION
REPEAT 4 [FD [DIMENSION RT 90]

END

NOTE:

The: that appears in the procedure must be there
every time an input variable is used, attached di- ^\
rectly to the variable name without a space between.
The dots distinguish the name of a variable from
the name of a procedure. We call the colon (:) DOTS
because it is more descriptive. Read :DIMENSION
as DOTS DIMENSION.

2. Variable names are just as much your choice as
procedure names. We could have written

TO BOX :WIDTH or
TO BOX :DIST or even

TO BOX :X

Of course, the name you choose in the title line
must also be the one used within the procedure, so
those procedures would have had

FD :WIDTH FD :DIST and FD :X

3. Note where the variable-number name must go, in)
the same place in which you previously put the

G _ 5 0 T e r r a p i n L o g o T u t o r i a l

Graphics

constant number. In the procedure TRI, for example,
FD 100 becomes FD :LENGTH. To pass the number
into the procedure for FORWARD to use, the title
now must become TO TRI :LENGTH.
The two procedures look like this:

TO TRI
REPEAT 3 [FD 100 RT 120]

END

TO TRI [LENGTH
REPEAT 3 [FD [LENGTH RT 120]

END

TRI

/ * * \

This TRI procedure is very much like the Logo primi
tives you have been using. For a triangle of any size,
you type TRI and the length of the side.

Try a few triangles of different sizes.

Try typing TRI without a number. Now that TRI is
defined with a variable input, Logo looks for that input,
just as it does when you type FD or RT. To recall just
what inputs a procedure is expecting, type either
POTS, to print out the titles of all the procedures in
your workspace, or PO (procedure name), to print out
the one procedure (for instance PO TRI).

Terrapin Logo Tutorial G-51

Graphics

5

c>

~)

You have a choice now when you want to use TRI in
another procedure. You can specify the size of the trian
gle in the procedure (TRI 75), or you can choose to
decide on the size when you run the superprocedure it
is in. You must pass the number in to TRI if you do not
specify it inside the procedure. For example:

TO TWO.TRI TO TW0.TRI2 :LENGTH
TRI 75 TRI :LENGTH
RT90 RT90
TRI 75 TRI :LENGTH

END END

Note: Two words can be combined with a dot to make
a title.

Both versions of TWO.TRI use the same subprocedure)
TRI. Both versions can make a triangle design with
triangle sides of length 75. BUT one version can only
draw a size 75 design, while the other can draw de
signs of any size. The size of its design will depend on
the number you give it when you run it.

The variable name :LENGTH may be used in any num
ber of procedures. You are allowed to have only one
procedure named SQUARE or TRIANGLE, but both
may use the variable name :LENGTH. :LENGTH is
what is called a local variable, local to its procedure. A
name used in one procedure will not interfere with the
same name used in another.

This also means that TWO.TRI2 could have used a
different name for the variable than was used internally
by TRI.

G - 5 2 T e r r a p i n L o g o T u t o r i a l

/ »îfĉ.

,mm^

/ ' " " ^ N

Graphics

Projects: Sizable Shapes
1. Write a procedure SQV with variable input and use

it in a new procedure SQUARE4 to draw a series of
squares of different sizes, all starting at the same
place. (Hint: you can add to a picture; you don't
have to clear the screen with DRAWeverytime you
want to draw something more.)

2. Add another set of squares beside the first.
3. Write a procedure that uses a specific size square in

it.
4. (Here's a toughie) Write a procedure that draws 4

squares, each 25 steps bigger than the last, and
which receives as input the size of the first square
when the procedure is run.

From SQUARE to POLY

SQUARE4 (if you did project 1) now has a variable
input for the length of the side, but it still has two other
numbers, the size of the turn and the number of times
the sequence is repeated. Either or both of these num
bers could also become variables. (However, if we
change either one, it would not draw a square.)

You know from your experiments that 360 is the magic
number that takes the turtle all the way around and
back to the same heading, no matter what shape it is
going around. You also know that the amount of the
turn at each corner is 360 divided by the number of
turns. Remember too that Logo will do all the work of
dividing for you. You may use 360/4 as the input for
your turn in SQUARE4, for instance.

T e r r a p i n L o g o T u t o r i a l G - 5 3

Graphics

~)

In other words, the SQUARE4 procedure could be
written

TO SQUARE4 :LENGTH
REPEAT 4 [FD .LENGTH RT 360/4]

END

The 4 in both places is the number of turns. SQUARE4
now has a variable input for the length of the side and
one other number that might be changed, the number
of turns or sides. What if we made that number a vari
able, too?The procedure would repeat the side-and-
turn sequence that number of times, and would divide
360 by the number for the turn. Sounds all right, but it
wouldn't draw a square. It would draw a many-sided
figure, (called a polygon) with the number of sides you ^^
c h o s e w h e n y o u r a n i t . C a l l i t P O LY.)

POLY will need two names for the variable inputs, and
they should clearly describe what they are for.

:LENGTH would be fine for the length of the side
again, and you could use :TURNS for the number of
turns (or sides).

Both variable names must appear in the title, to pass
the numbers in to where they are used in the proce
dure. Choose the order you will remember best. They
do not have to appear in the title in the order in which
they are used in the procedure, but, when you run
POLY, the numbers must be typed in the same order as
the variables which represent them in the title. POLY
100 4 will be very different from POLY 4100.

G - 5 4 T e r r a p i n L o g o T u t o r i a l

/ m ^
Graphics

So POLY could look like this:

/ ^ ^ S

/ ^ \

TO POLY :LEN :TURNS
REPEAT :TURNS [FD :LEN RT 360/:TURNS]

END

»=000
POLY

Projects: Regular Polygons

Experiment with different inputs to POLY. Write down
the ones you like.
1. What is the difference between POLY 100 4 and

POLY 4100? Try them both.
2. Try POLY with the same :LENGTH input and a lot

of different numbers for :TURNS.
3. Keep :TURNS the same and try a lot of different

numbers for :LENGTH.
4. Make a design using POLY twice, with a different

number of sides (:TURNS) each time.
5. Use POLY to make a triangle.
6. What is the largest number you can use for turns?

(Hint: hide the turtle for a quicker trip.)

Another View of POLY

Look back at the procedures in which you used divi
sion to help you draw 3,4,5,6, and 7-sided figures.

Terrapin Logo Tutorial G-55

Graphics
|.;W'WS3fr;..* £'>v .•̂WZ'W'- f '■* s ^ ^ r ^ t J L V i ^ L S

~)

They probably look a lot alike. In English you might
describe them this way:

To draw a shape of some specified number of sides,
repeat for each side: go forward some distance and
turn right 360 divided by the number of sides

Let's use a forward distance of 50. The English trans
lates to Logo:

TO SHAPE :NUMBER.0F.SIDES
Typeasoneline REPEAT iNUMBER.OF.SIDES

[FD 50 RT 360/:NUMBER.OF.SIDES]
END

A
(Note that the REPEAT statement must be typed on
one line.) Type in SHAPE and try it with various in
puts. Try

SHAPE 3
SHAPE 4

We can also make shapes of various sizes by making
the forward distance a variable. Replace the 50 with
the variable :DISTand add it to the tide:

^

TO SHAPE :NUMBER.OF.SIDES :DIST
Typeasoneline REPEAT :NUMBER.OF.SIDES

[FD :DISTRT360/:NUMBER.OF.SIDES]
END

Try

SHAPE 3 50 and SHAPE 50 3

It is important to remember the order of the variables
in the tide.

G-56 Terrapin Logo Tutorial

Graphics

S ^ ^ \

^

This procedure produces the same design as POLY
(above). The number of sides will be the same as the
number of turns.

Circles

So far we have drawn only straight lines. How does
the turtle draw curves? When you consider that all it
can do is step and turn, then it must be some combina
tion of steps and turns in curves as well as in straight-
sided figures. Experiment with small steps and small
turns. Use REPEAT with your little steps and turns to
avoid exhaustion. Try some combinations in IMMEDI
ATE mode, then make procedures of the combinations
you like.

Some things to remember:
• the turtle draws faster when hidden (HT)
• <CTRL> G stops the turtle, whatever it is doing
• you know how far the turtle must turn to finish back

where it started

Projects: Curves

Try these first, then make procedures of the ones you
would like to be able to use. Give your procedures
descriptive names, for instance, a 6th-of-a-circle arc to
the right might be ARCR6.

1. Use REPEAT to draw a circle, then without clearing
the screen, draw another circle with steps twice as
big as in the first one. Draw another with the turn
twice as big.

T e r r a p i n L o g o T u t o r i a l G - 5 7

Graphics

^

2. Draw a circle to the right and an identical one to the
left.

3. Figure out the diameter (distance across) of the last
circle.

4. Draw a quarter-circle arc to the right.
5. Draw another quarter-circle arc with steps twice as

big as the one in #4.
6. Draw a 6th-of-a-circle arc to the left, then a 6th-of-a-

circle arc to the right. (Hint: use division, and let
Logo do it for you)

7. Write a procedure that uses an arc procedure and
straight lines to draw a picture or design.

8. Do these projects using variable inputs for the step
size and the number of degrees.

See the section on Procedures for a way to develop an
arc procedure. There are also several demonstration
arc and circle procedures on the Utilities Disk. See the
Utilities Disk section.

Using Subprocedures
A procedure used as a command in another procedure
is called a subprocedure. The procedure which uses it
is a superprocedure. You have already used SQUARE
as a subprocedure when you called it in the su
perprocedure SQ, and, if you did the projects, you
used procedures as subprocedures to draw towers,
windows, and a design with arcs and lines.

A subprocedure is useful when you want to use a pro
cedure as a new primitive in a variety of procedures, or
several times in one procedure. You could write a pro
cedure to do one side of a square (such as FD 73) and

~ * \

^

G " 5 8 T e r r a p i n L o g o T u t o r i a l

J ^ ^ ^ \

Graphics

one turn (RT 90). If you called it SQUARESIDE, then
your square procedure would look like this:

TO SQUARE2
SQUARESIDE
SQUARESIDE
SQUARESIDE
SQUARESIDE

END

(or perhaps)

TO SQUARE2
REPEAT 4 [SQUARESIDE]

END

A

SQUARESIDE SQUARE2

Terrapin Logo Tutorial G-59

Graphics
/ " ^ ^ ^ k .

Any Logo procedure can be a subprocedure. In addi
tion, subprocedures may have subprocedures of their
own.
For example:

SQUARE2 uses SQUARESIDE as a subprocedure.

We write WINDOW which uses SQUARE2 as a subpro
cedure.

SQUARE2, which has SQUARESIDE as a subproce
dure, is now also a subprocedure.

We write HOUSE, which uses WINDOW, and TOWN,
which uses HOUSE...

We can build as far as we want;
all the procedures except the top one (TOWN) will be
used as subprocedures, and all but the bottom one
(SQUARESIDE) will use subprocedures. All but TOWN
and SQUARESIDE will both use and be subprocedures.

/ " ^ ^ ^ K

WINDOW HOUSE TOWN

> -

The point of this exercise is to show that even now you
are writing procedures you can use later on. As you
write your way through the tutorial, note the proce
dures that may be particularly useful to you as subpro
cedures. You might even want to file them separately ^

G-60 Terrapin Logo Tutorial

/•̂ ■N
Graphics

after a while, in a file called NEW.PRIMITIVES (Logo
allows you to use periods in your procedure and file
names to connect words.) Your arc procedures are
good examples of useful primitive-like subprocedures.

Non-stop Procedures:Introduction to Recursion

Your procedures up to now have been very well-be
haved and have stopped when you told them to. Now
let's try a type of procedure that simply doesn't know
when to stop.

As you know, a Logo procedure can use any Logo com
mand, whether it is a primitive or a procedure. This
includes a procedure being able to use itself.

The ability of a procedure to call itself is called recur
sion. We shall work up to the power of recursion with
some simple examples. What happens when you tell a
procedure to do itself? Let's try it with a square pro
gram:

TO SQUARE3 :LENGTH
FD :LENGTH
RT 90 (Stop me wi th <CTRL> G)
SQUARE3 :LENGTH

END

What have we told SQUARE3 to do?
1. Draw a side and do a turn
2. DoSQUARE3

1. Draw a side and do a turn
^ 2 . D o S Q U A R E 3

1. ...

6>

T e r r a p i n L o g o T u t o r i a l G - 6 1

Graphics

o
Only a <CTRL> G typed at the keyboard will stop this
runaway square. It will go over and over the same
track until you stop it. Not very interesting.

But what would happen if there was a side and a turn
that made a design which would not go over itself?
Change the amount of the turn. Try a little more or less
than the 90 used for a square. Try, for example,

FD :LENGTH
RT87

Projects: Simple Recursion
1. Write a recursive procedure that draws a little figure

then calls itself.
2. Write a recursive procedure that uses arcs and lines.
3. Use your triangle procedure in a recursive proce

dure.
4. Write a recursive procedure to draw a star.

Recursion: Changing the Input
WRAP, NOWRAP, CONTINUE (CO)
Another interesting possibility is that of changing the
length of the side each time it is drawn. Remember,
wherever Logo requires a number, there are several
ways to give it one. We have tried actual values (100 for
instance) and right now we are using a variable
(:LENGTH). The next kind of number to try is a number
which Logo will produce for us by doing some
arithmetic, for instance, :LENGTH + 3.

^

~ i

~ i

G - 6 2 T e r r a p i n L o g o T u t o r i a l

Graphics

TO SQUARAL :LENGTH
FD :LENGTH
RT90
SQUARAL :LENGTH + 3

END

When SQUARAL calls SQUARAL, it uses a little big
ger number for the length of the side. Now, even with
a turn of 90, the design will not repeat itself on the
same path.

What happens when you run this procedure: Type

SQUARAL 5

squaral j The ^tle m0ves FD 5 for the first side
and turns right.

2. Logo runs SQUARAL 5+3.

SQUARAL 8

1. The turtle moves FD 8, 3 steps more
than the first side and turns.

2. Logo runs SQUARAL 8 + 3.

SQUARAL 11

1. The turtle moves FD 11 and turns.
2. Logo runs SQUARAL 11+ 3.

and so on.

The second side, and each side after it, will be 3 steps
longer than the previous side, and the picture will
clearly not be a square.

Terrapin Logo Tutorial G-63

Graphics

n
Before long, the line spills off the edge and
reappears on the other side of the screen.
Logo is in WRAP mode, where the lines wrap
around the screen rather than stopping at the
edge. This can make interesting effects, partic
ularly with PENCOLOR 6, which reverses the
color when lines cross.

Remember, you can use FULLSCREEN or
<CTRL> F, SPLITSCREEN or <CTRL> S,
and TEXTSCREEN or <CTRL> T to change
the amount of drawing space showing on the
screen.

To make Logo stop the procedure when the /4^
line threatens to get out of bounds, type NO-)
WRAP to put Logo into NOWRAP mode.
Now, no matter where the turtle is when you
run the procedure, when the design gets too
big for the screen, Logo will stop it. (There
are more elegant ways to stop recursive proce
dures mentioned later on. See Stopping With
Style.)

The commands WRAP and NOWRAP, like all
other Logo commands, can also be used in
procedures. Whenever they are used, each
stays in effect until the other is used, or until
you exit DRAW mode.

^

G - 6 4 T e r r a p i n L o g o T u t o r i a l

Graphics

Projects: Changing Inputs
Make the changes suggested below and give each
changed version a new name. Run each version with
several different inputs, large and small (SQUARE 10,
SQUARE 100 for instance)

1. Change the amount added to :LENGTH in
SQUARAL make it large; make it very small.

2. Subtract an amount from :LENGTH in SQUARAL
instead of adding to it.

3. Change the size of the turn a little bit.
4. Multiply :LENGTH by a number. Keep trying until

you find one you like. Remember, use the star (-)£) for
multiplication. (Hint: you can use decimals such as

(^ 1 . 1 o r 1 . 5)5. Try all of your procedures in WRAP mode and NO-
WRAP mode.

6. In WRAP mode, try your procedures with PENCO-
LOR6(PC6).

7. Write a procedure which takes a variable input and
draws one square. (Hint: use REPEAT) Then write a
recursive procedure that uses the square procedure
as a subprocedure and draws a series of squares
which get bigger and bigger.

T e r r a p i n L o g o T u t o r i a l G - 6 5

Graphics

^

~)

Stopping With Style: IF-THEN, STOP
Logo can make choices based on what you tell it to do.
You can write IF (something) is true, THEN (do some
thing else) (STOP for instance). (If it is not true, it will
go directly to the next line. If it IS true, and the instruc
tion is not STOP, it will execute the instruction and
THEN go to the next line.)

For example, you would like to be able to specify the
number of times a recursive procedure executes, and
specify a different number every time you run it. Make
the procedure count down from the number you give
it, and test the count each time it executes with

IF :TIMES = 0 THEN STOP

Here is a procedure that draws a square, turns the turtle
a little, and does it again.

TO DESIGN :TIMES
IF :TIMES = 0 THEN STOP
SQUARE 100
RT45
DESIGN :TIMES-1

END

This is what happens when you type

□ DESIGN 4

1. Logo tests :TIMES (4) to see if it is zero.
2. Logo runs SQUARE and turns the turtle
3. Logo calls DESIGN 4—lor DESIGN 3

G - 6 6 T e r r a p i n L o g o T u t o r i a l

e>

DESIGN

Graphics

DESIGN 3

1. Logo tests :TIMES (3) to see if it is 0
2. Logo runs SQUARE and turns the turtle
3. Logo calls DESIGN 3—lor DESIGN 2

DESIGN 2

1. 1. Logo tests :TIMES (2) to see if it is 0
2. Logo runs SQUARE and turns the turtle
3. Logo calls DESIGN 2—lor DESIGN 1

DESIGN 1

1. tests :TIMES (1) to see if it is 0
2. runs SQUARE and turns the turtle
3. calls DESIGN 1-1 or DESIGN 0

DESIGN 0

1. Logo tests :TIMES (0) to see if it is zero
and stops. :TIMES = 0 is finally true.

Control is passed back to each level in turn and the
procedure is done. This aspect of recursion will be
covered in the next section.

What happens when your friend tries to be funny and
runs DESIGN with a negative number?(Ah, you tried it
... Well, remember <CTRL> G.)You will be pleased to
know that you can test for that also. In fact, you can
put as many tests as you wish in your procedure. You
can test for that negative number by using one of the
two other conditions, less than (<) or greater than (>).

T e r r a p i n L o g o T u t o r i a l G - 6 7

Graphics

To cover both situations, your negative friend and the
normal ending of the procedure, change your test:

TO DESIGN :TIMES
IF :TIMES < 1 THEN STOP
SQUARE 100
RT45
DESIGN :TIMES-1

END

Now DESIGN will stop when :TIMES gets to 0 and
will never start if :TIMES is less than 0.

The procedure can still have variable inputs for other
values, such as the length of the side of the square:

T O D E S I G N : T I M E S : L E N G T H ^
IF :TIMES < 1 THEN STOP
SQUARE :LENGTH
RT45
DESIGN :TIMES-1 :LENGTH

END

You can even change the length each time it is called if
you wish by incrementing it as it is in SQUARAL.

NOTE: Be sure the variable you test in your procedure
will eventually reach the test value. For example, in
our first version of DESIGN, :TIMES would never have
reached 0 if it had started out negative. The first one, in
fact, will also fail with a decimal such as 10.3.

If you don't happen to think of this possibility, the
procedure may go on and on and on and you won't
know why.

- ^

G - 6 8 T e r r a p i n L o g o T u t o r i a l

stm^

s » ^

Graphics

This is a common problem in writing procedures: the
computer always does what you TELL it to do, whether
or not it's what you want it to do. BUGS creep into the
procedures of the best of programmers.

Bugs can be fun. You can learn from them, and some
times what the computer does is more interesting than
what you had intended.

Projects: Testing and Stopping
1. Try replacing the 45 in RT 45 with something that

depends on :TIMES, such as 4 * :TIMES.
2. Write a procedure to draw a tower of smaller and

smaller squares, choosing the number of squares
when you run it.

3. In DESIGN, change the input for RT to a variable.
(Remember to add the variable name to the proce
dure title)

Using the Full Power of Recursion

To see Logo execute procedures step by step,
use TRACE, described in the section on
debugging in this chapter and in the Logo
Command Glossary.

The results of the recursive procedures shown so far
could have been achieved with non-recursive proce
dures. Each one so far has done something and then
called itself to do essentially the same thing again.
Except for DESIGN, the procedures did not stop by
themselves, so they never had the chance to return to
the top level.

T e r r a p i n L o g o T u t o r i a l G " 6 9

Graphics

^

The power of recursion, and what makes it different
from iteration (repetition), is its ability to come back
from the last call to itself (called the deepest or lowest
level), finishing a job at each level as it returns.

This will be a new concept to many. Logo is one of the
few computer languages with this capability.
The following comparison will illustrate this:

TO COUNTER :NUMBER
IF:NUMBER>2STOP
PRINT :NUMBER
COUNTER :NUMBER + 1

END

T O C O U N T . P L U S : N U M B E R ^
IF:NUMBER>2STOP
PRINT :NUMBER
COUNT.PLUS :NUMBER + 1
PRINT :NUMBER

END

Small numbers are used to permit full step-wise
explanation.

COUNTER works in the same way as DESIGN. Type

COUNTER 1 and Logo will respond
1
2
COUNT.PLUS, as its name suggests, does more. This is
what happens when you type

G - 7 0 T e r r a p i n L o g o T u t o r i a l

Graphics

r

n

COUNT.PLUS 1

1. Logo tests to see if :NUMBER (1) greater than 2.
2. Logo prints :NUMBER (1).
3. Logo calls COUNT.PLUS :NUMBER +1 (2).
4. (The last statement, PRINT :NUMBER, is not exe

cuted.)

COUNT.PLUS 2

1. Logo tests to see if :NUMBER (2) > 2.
2. Logo prints :NUMBER (2).
3. Logo calls COUNT.PLUS :NUMBER +1 (3).
4. (The last statement, PRINT :NUMBER, is not

executed.)

COUNT.PLUS 3

1. Logo tests to see if :NUMBER (3) > 2.
2. Logo stops and returns control to the proce

dure that called COUNT.PLUS 3, which was
COUNT.PLUS 2.

COUNT.PLUS 2

5. Logo executes the next statement in COUNT
.PLUS 2, which is PRINT:NUMBER. Prints 2.

6. Logo stops and returns control to the procedure
that called COUNT.PLUS 2, which was COUNT
.PLUS 1.

COUNT.PLUS 1

5. Logo executes the next statement in COUNT.PLUS
1, which is PRINT :NUMBER. Prints 1.

^ 6. Logo stops and returns control to the procedure
! that cal led COUNT.PLUS 1, which was the main

Logo command level.

T e r r a p i n L o g o T u t o r i a l G ~ 7 1

Graphics

The diagram shows how all copies of COUNT.PLUS
exist at once, each with its own private value for
:NUMBER.

~ >

COUNT.PLUS

:NUMBER

IF NUMBER > 2 STOP

PRINT :NUMBER

COUNT.PLUS :NUMBER +1 -^

PRINT :NUMBER

prints 1
and stops

COUNT.PLUS

:NUMBER

COUNT.PLUS

IF NUMBER > 2 STOP

PRINT :NUMBER

COUNT.PLUS :NUMBER+1 -^

PRINT :NUMBER

:NUMBER

IF :NUMBER > 2 STOP

prints 2
'and stopsi

just stops

The process of recursion is based on one idea:

When a procedure (A) calls another procedure (B), the
calling procedure (A) puts on hold any instructions
which come after the call. When the procedure (B)
which is called stops, the calling procedure (A) con
tinues with the rest of its instructions after the call to
(B).

What makes recursion so powerful is that this idea
applies also to (B) and any procedure (B) calls, and any
procedure that THAT procedure calls...

And all of these copies of the procedure co-exist, each
with its private portfolio of values. All copies are used
and exist as if they were completely different proce
dures.

G-72 Terrapin Logo Tutorial

Graphics

An excellent example is the procedure SQS which
produces squares with half-size squares on the corners:

. # ;py. TO SQS :LENGTH
AW IF :LENGTH < 5 STOP

REPEAT 4 [FD :LENGTH SQS :LENGTH/2 RIGHT 90]
END

TO SQR :LENGTH
IF :LENGTH < 5 STOP
REPEAT 4 [FD :LENGTH RT 90]
SQR :LENGTH/2

END

Note the difference the placement of the recursive
call makes in SQR and SQS.

(The procedure EXPONENT in the Computation chap
ter and the procedure TET on the Utilities disk (see the
Utilities chapter) are two other examples of good
recursive procedures. See also Recursion in Music in
the Music chapter.

See chapter 2 in LOGO FOR THE APPLE II, by Profes
sor Harold Abelson, M.I.T., for a further discussion of
recursion.

Recursion Projects
1. Write a set of procedures which draw successively

smaller houses. Use subprocedures for the parts of
the house.

2. Write a procedure to draw a binary tree. A binary
tree is a v-shaped tree with a smaller v-shaped tree

.gp^ on each tip. Develop the procedure for the basic V,! then determine where in the procedure you would
insert a recursive call to itself to draw a smaller tree.

T e r r a p i n L o g o T u t o r i a l G - 7 3

Graphics

~)

^

To stop the procedure, use a test similar to the one
used in SQS.

3. Write a procedure that draws a series of successively
larger fish, each totally within the next larger.

Special Effects and New Utilities
Remember that PC 6 changes black to white and white
to black when turtle tracks cross. Try it with SQUARE3
and SQUARAL.

TO SQUARE3 :LEN TO SQUARAL :LEN
F D : L E N F D : L E N
R T 9 0 R T 9 0
SQUARE3 :LEN SQUARAL :LEN + 3

E N D E N D

Clear the screen, hide the turtle, set your pencolor to 6
(the reversing color), type SQUARE3, and hit <CTRL>
F so you can watch on the full screen:

DRAW HT PC 6 SQUARE3 <CTRL> F

If you like the effect, write a procedure which will do
it for you at the stroke of a single name. Give the proce
dure a name and the commands in the line above (use
the word FULLSCREEN for the <CTRL> F):

TO SUPERSQ
DRAW HT PC 6 FULLSCREEN SQUARE3

END

Type SUPERSQ and sit back.

You could also make a separate procedure of the)
SETUP part. Make this one of your own utility proce-
dures.

0 _ 7 4 T e r r a p i n L o g o T u t o r i a l

Graphics
*mm^

mmummmMawmit&wx^.Jz^x-ttu?-'.!>■>* '* A**;-f/ V-'.'.i'"-£*■■'£*;**:? tf'tfi?̂::>^V»'^X4K«MkJ^M90S«aMHHIHI

TO SETUP TO SUPERSQ
DRAW SETUP
HT SQUARE3
PC 6 END
FULLSCREEN

END

r ^ L z * *

y"lii^fcv

/ "^^\

Since Logo lets you use primitives and proce
dures the same way, you can build your own
file of new primitives, utility procedures that
do the special things that you want to do.
This might even include procedures like C
which has the single command CATALOG,
simply to save typing...

If you can change a color once, you can change it again,
both background and pencolor. You can make the
change once in a great while, or you can flash from
one to another.

Here's a flashy example (NOTSQ is not quite a square)

TO NOTSQ
REPEAT 4 [FD 85 RT 85]

END

TO FLASH.NOTSQ
PC 6
BG 0 NOTSQ
BG 1 NOTSQ
BG 2 NOTSQ
FLASH.NOTSQ

END

FLASH.NOTSQ sets the pencolor to 6 (reversing), the
background to black, and runs NOTSQ, four lines that

T e r r a p i n L o g o T u t o r i a l G - 7 5

Graphics

^

don't quite meet. The background changes to white,
four more lines are drawn, the background changes to
a color, four more lines, then the whole procedure
repeats endlessly. Each time a line crosses a line, the
color of that spot is reversed.

RANDOM Numbers, Numbers from
Arithmetic Operations, Inputs, Outputs
The Logo primitive RANDOM will give you a number,
chosen at random from the group you specify. You
specify the group from 0 to your number by giving
RANDOM the next higher number. For instance, RAN
DOM 7 will choose a number from 0 to 6 (just what PC
and BG need).

The number RANDOM chooses is called its OUTPUT.
If you type RANDOM 7 at the keyboard, Logo will
respond with RESULT: 4 (or some other number from 0
to 6), just as it printed RESULT: 90 when you typed
360/4. Both RANDOM and the arithmetic operation
produce a result, that is, they each put out a number,
which is called an OUTPUT.

The number RANDOM uses is its INPUT. You can
never leave out an input: the command needs it to
work. On the other hand, in IMMEDIATE mode, Logo
will print an output as a RESULT sometimes. However,
any time Logo expects to go on, as in a procedure or a
REPEAT command, it needs to know what to do with
that output. Try typing

REPEAT 4 [RANDOM 8]

and Logo will complain.

G - 7 6 T e r r a p i n L o g o T u t o r i a l

• ^

^

/ ^ ^ \

Graphics

This is equivalent to typing

REPEAT 4 [5]

Give RANDOM'S OUTPUT to something that requires
an INPUT (such as FORWARD or PRINT), and you are
in business:

REPEAT 4 [FORWARD RANDOM 8]

Ooh la la... it works.

To make the turtle's pen or the background take on a
random color, use RANDOM 7 instead of the number.
FLASH.NOTSQ could now be

TO FLASH.NOTSQ
PC 6
BG RANDOM 7
NOTSQ
FLASH.NOTSQ

END

(You have the choice of editing the old FLASH.NOTSQ
or typing ERASE (or ER) FLASH.NOTSQ and typing
the new version.)

Here FLASH.NOTSQ sets the pencolor to reverse,
picks a random background color, runs NOTSQ, then
does the same three steps again and again until you
stop it.

To avoid using the reversing (eraser) color #6, use
RANDOM 6, which will select numbers from 0 to 5. To

T e r r a p i n L o g o T u t o r i a l G - 7 7

Graphics
/ " ^ ^ ^ K

avoid using black as well (color #0), use 1 + RANDOM
5. This gives you a random number from 1 to 5 because
1 is always added to a random number from 0 to 4.

Try adding one of these lines to one of your procedures:

PC 1 + RANDOM 5
BG1 + RANDOM 5

Note that the number used with PC (PENCOLOR) and
BG (BACKGROUND) is the result of an arithmetic
operation again, addition this time. Recall that some of
the turns in your shape procedures were calculated by
division.

Any time a number is required in Logo, it can be given ̂ m^^
as die result of an arithmetic operation. In Logo, use +)
and - for addition and subtraction (as usual), the slash ^
(/) for division, and the star (■^■) (or asterisk) for multi
plication. There are rules you need to know if you use
more than one operator (H—/■)£) at a time; see the COM
PUTATION chapter for details on that.

Projects Using Random
1. Substitute FORWARD RANDOM 100 for the side

in SQUARE3.
2. Write a REPEAT statement using a FORWARD com

mand and a random turn from 0 to 360 degrees.
3. Write a recursive procedure using a FD command

and a random turn between 90 and 180 degrees.
4. Try some other ranges for turns; choose the most

interesting to keep as a procedure.

G - 7 8 T e r r a p i n L o g o T u t o r i a l

< $ ■

A ^ ^ \

Graphics

Debugging by printing values: PRINT (PR)

Logo is one of the easier computer languages to debug
(get rid of the errors, called bugs) because large pro
grams are composed of small procedures. It is a lot
easier to debug a small procedure than a long, compli
cated program. Always make sure your procedures are
debugged (run correctly by themselves) before you use
them in other procedures.

TO DESIGN :TIMES :LENGTH
IF :TIMES =0 THEN STOP
SQUARE :LENGTH
RT45
DESIGN :TIMES-1 :LENGTH

END

In DESIGN, if you type

DESIGN 6.5 100

the procedure will never stop.

To find out why, we want to check out :TIMES. It
would be nice to print it out each time around.

Use the Logo PRINT (PR) command to check on the
value of :TIMES. Type

TO DESIGN

and add this line (in EDIT mode) just before the test
(before IF...):

^ P R : T I M E S

T e r r a p i n L o g o T u t o r i a l G - 7 9

Graphics

^

(You can remove it after you have debugged the proce
dure.)

DESIGN now looks like this:

TO DESIGN :TIMES :LENGTH
PR :TIMES
IF :TIMES =0 THEN STOP
SQUARE :LENGTH
RT45
DESIGN :TIMES-1 :LENGTH

END

Type <CTRL> C to leave EDIT mode, then type

DESIGN 6.5 100

As it runs DESIGN, Logo will draw the design in the
graphics part of the split-screen, and will print the
values of :TIMES on the four lines of the text part of
the screen.

Because the values are not whole numbers, if you look
quickly, you will see them get smaller and smaller and
then become negative and get larger and larger. In
other words, :TIMES has passed zero and skipped the
test because -.TIMES was never exactly zero.

Now you know that the bug is in the test that failed to
account for this possibility. You can either change the
test or add another test. The best thing to do is change
the test, since two tests are not really necessary. How
ever, when you change the test, be sure to try out
DESIGN with every possibility you can think of.
ALWAYS test your procedures using all of the ^""^
possibilities you can think of.

G - 8 0 T e r r a p i n L o g o T u t o r i a l

Graphics

Debugging Using PAUSE: <CTRL> Z
CONTINUE (CO)
PAUSE or <CTRL> Z stops a procedure in such a way
that you can start it again. While it is stopped, you can
find out where the (hidden) turtle is by typing SHOW-
TURTLE (or ST), hide the turtle with HT, print the
procedure out with PO, PRINT variable values, or do a
number of other things. To resume running the proce
dure, type CONTINUE (or CO).

Negative Inputs
There is also another possibility: remember that friend
of yours who likes negative inputs? What happens to

/•^ DESIGN if :LENGTH is negative? What happens to
\ :TIMES? What happens to the friend?

Well, if :LENGTH is negative, the turtle just backs
around in the opposite direction. Logo knows all about
negative lengths.

And the friend? Unless he knows how to give that
negative input, Logo will give him a (no doubt helpful)
error message.

A negative input for the second variable must be in
parentheses to show that it is an input and not a num
ber to be subtracted from the first variable, for, as you
will recall, inputs can be the results of arithmetic oper
ations. Type

DESIGN 5 (-100)

Let's set up a situation where the size of the turn be
tween squares depends on the number of :TIMES the

T e r r a p i n L o g o T u t o r i a l G - 8 1

Graphics
^"^ \

square is drawn, so we can have a complete design. To
do this, we replace the 45 with 360 / :TIMES.

TO DESIGN :TIMES :LENGTH
IF :TIMES < 1 THEN STOP
SQUARE :LENGTH
RT 360/:TIMES
DESIGN :TIMES-1 :LENGTH

END

Now we have two things which depend on :TIMES,
:TIMES itself, which must always be positive, and the
turn between squares, which could be either positive
or negative. A negative turn just goes around in the
other direction.

How can we fix it so a negative number for :TIMES
will give us a positive value for :TIMES, but keep the
negative turn?

To do this, we must write a procedure to test :TIMES,
then call DESIGN with the appropriate values. We also
need to use a variable for the turn, so we can keep it
negative when :TIMES changes to positive. DESIGN
becomes

TO DESIGN :TIMES :LENGTH :TURN
IF :TIMES < 1 THEN STOP
SQUARE :LENGTH
RT :TURN
DESIGN :TIMES-1 :LENGTH :TURN

END

COMPLETE.DESIGN is the procedure which handles
t h e d e t a i l s : ^ " ^

G _ 8 2 T e r r a p i n L o g o T u t o r i a l

r
Graphics

Type as one line

TO COMPLETE.DESIGN :TIMES :LENGTH
IF :TIMES < 0 THEN

DESIGN-:TIMES :LENGTH 360/:TIMES
ELSE
DESIGN :TIMES :LENGTH 360/:TIMES

END

S^^s

This is a one-line procedure, shown here on several
lines for clarity. It must be typed as one line.

This says that if :TIMES is negative, change it to posi
tive when you call DESIGN, otherwise leave it alone.
In both cases, :TURN uses :TIMES directly, so if
:TIMES is negative, :TURN is negative; if :TIMES is
positive, :TURN is positive.

More on Debugging: TRACE, NOTRAGE

Logo provides a detective system to trace through the
procedure with you as the procedure is executed. Logo
prints each line on the screen, you press <RETURN>,
and Logo executes the line. Type TRACE to activate
TRACE mode, NOTRACE to get out of it. See the Ap
pendix for a full description of TRACE and NOTRACE.

/■^*s

More About the Turtle:
TUETLESTATE (TS), HEADING,
SETHEADENG (SETH)9 TOWARDS

Logo primitives which give information about the
turtle are useful for testing.TURTLESTATE is a good
example, giving a list of four pieces of information.

Terrapin Logo Tutorial G-83

Graphics
^̂ ^̂ \

Type

TURTLESTATE and Logo will reply
RESULT: [TRUE TRUE 0 1]

if 1. It is TRUE that the pen is down
2. It is TRUE that the turtle is visible
3. Background color is 0 (black)
4. Pencolor is 1 (white)

Refer to the chapter on Words and Lists for how to test
against a member of a list. You can also print the infor
mation, i.e. PRINT TURTLESTATE.

Logo uses HEADING for the direction the turtle is
p o i n t i n g . T y p e ^ " " N

HEADING and Logo will reply
RESULT: 45.007

or whatever number of degrees the turtle has turned to
the right (clockwise) from facing up.

PRINT HEADING, whether used in a procedure or not,
will print the number alone. You can use HEADING to
stop a procedure after a turn. Example:

IF HEADING < 45 STOP

Use SETHEADING (SETH) to tell Logo what direction
you want the turtle to face:

SETHEADING 45

turns the turtle as if it had turned 45 degrees to the)
right from facing straight up.

G - 8 4 T e r r a p i n L o g o T u t o r i a l

Graphics

X ^ ^ \

To change the turtle's heading by a specific amount,
use both:

SETHEADING HEADING + 5

will turn the turtle 5 degrees to the right.

TOWARDS turns the turtle to face a point designated
by its coordinates:

SETHEADING TOWARDS 100 (-100)

turns the turtle to face a point 100 turtle steps to the
right (x = 100) and 100 turtle steps down (y = -100)
from the center of the screen. Note that here, too, the
negative input is in parentheses to avoid confusion
with subtraction. Another way to write a negative
second input is to write it as zero minus the number.
Example:

SETHEADING TOWARDS 100 0-100

Position When Yom Want It: XCOR, YCOR,
SETX, SETY, SETXY
The graphics screen can be thought of as a grid, with X
going across and Y going up and down. At the HOME
position in the center of the screen, X and Y are zero. X
gets larger to the right; Y increases as you go up. X is
negative to the left of HOME, and Y is negative below
it.

XCOR and YCOR give the X and Y coordinates of the
(turtle's position on this grid. Type XCOR, YCOR,

T e r r a p i n L o g o T u t o r i a l G - 8 5

Graphics

^

PRINT XCOR, or PRINT YCOR and Logo will print the
X or Y coordinate. You may also test against either:

IF XCOR = 150 STOP

To move the turtle to a specific coordinate position,
use SETX, SETY, or SETXY. Only the position will
change; the turtle will not change its heading. Type:

SETX 100
to move the turtle across to x = 100
SETY 100
to move the turtle up or down to y = 100
SETXY 100 100
to move the turtle to the point x = 100, y = 100
S E T X Y 1 0 0 (- 1 0 0) ^
to move the turtle to x = 100, y = -100

Use these commands together to move the turtle a
specific distance:

SETX XCOR + 5

moves the turtle 5 steps to the right without changing
its heading.

SETXY XCOR + 5 YCOR - 5

moves the turtle 5 steps to the right and 5 steps down,
keeping the same heading.

SETXY is used in the Computation chapter to draw
curves using their equations. To see how to use SETXY
with joysticks and paddles, see PADDLE in the Logo ^N
Command Glossary.

0 _ 8 6 T e r r a p i n L o g o T u t o r i a l

r

r

/^"^*\

Graphics

INSTANT:
Logo Turtle Graphics for the Non-reader
Your Logo system disk contains a collection of proce
dures which makes Logo turtle graphics accessible to
young children. The INSTANT system uses single
character commands which are equivalent to longer
Logo commands. You can use colored stickers to iden
tify the appropriate keys for use with INSTANT.

To use INSTANT, turn on the Apple with the Logo
Language disk in the disk drive. When Logo is loaded
and displaying the question-mark prompt (?), put the
Utilities Disk in the disk drive and type

READ "INSTANT (with the ")

Logo will read in the file of procedures used by IN
STANT, identifying each as defined. Type

INSTANT (without the ")

The screen will display the commands used in IN
STANT as follows:

F MOVES THE TURTLE FORWARD
R TURNS IT RIGHT
L TURNS IT LEFT
D DRAW (CLEARS THE SCREEN)
U UNDO (ERASES LAST COMMAND)
N NAMES THE PICTURE
P SHOWS A PICTURE, ASKS FOR ITS NAME.
? GIVES HELP

PRESS ANY KEY TO CONTINUE.

T e r r a p i n L o g o T u t o r i a l G - 8 7

Graphics n
When you press a key, the list goes away, the turtle
appears, and the blinking cursor moves to the lower
left portion of the screen.

Type F to move the turtle forward.Turn the turtle with
either R or L.

D restores the screen to its original condition, erasing
the whole picture.

To erase just the last command, type U. Logo will re
draw the picture without the most recent command.

Animation Of A Sort

U makes it possible to do some interesting animation, ^""*s
since every motion of the turtle is relived in the re- '
drawing, even though it is not visible in the finished
drawing. For a Lively Line, try typing

F R L L R F R L L R F R L L R U

The idea is to wave the turtle back and forth every
once in a while, perhaps turn it completely around; let
it be indecisive about making a turn... It all comes out
again when you type the U.

To name a picture, type N and the name. (Names do not
have to be single letters; they can be of any length.) IN
STANT will create a Logo procedure which has that
name and contains all the steps used in drawing the
picture.

^

G - 8 8 T e r r a p i n L o g o T u t o r i a l

r

/ - • ^

Graphics

To get a picture back, type P and its name. When the
picture-drawing procedure is called using P, it is
added to the current list of commands and becomes
part of a new procedure when N is next used. Using N
and P in this way, you can do structured programming
in INSTANT.

The following INSTANT session demonstrates this
feature. Although the single-letter INSTANT com
mands do not print out when you type them, they
are shown here for convenience. The computer's
responses appear in italics.

F
F
R
R
N
WHAT DO YOU WANT TO CALL THIS PICTURE?
SIDE
P
WHAT PICTURE DO YOU WANT TO SHOW?
SIDE
P
WHAT PICTURE DO YOU WANT TO SHOW?
SIDE
P
WHAT PICTURE DO YOU WANT TO SHOW?
SIDE
P
WHAT PICTURE DO YOU WANT TO SHOW?
SIDE
N
WHAT DO YOU WANT TO CALL THIS PICTURE?
BOX

T e r r a p i n L o g o T u t o r i a l G - 8 9

Graphics

If you leave INSTANT and print out the procedures
SIDE and BOX, you can see that they are basically the
same procedures developed in the beginning of this
chapter, with minor differences such as three RIGHT
30 commands being used instead of RIGHT 90.

To save a picture on the disk, return to Logo with
<CTRL> G and type SAVEPICT " and the name you
want for your picture. Example:

SAVEPICT "PUPPY

will save the picture on the screen under the name
PUPPY on the disk.

T y p e ^

INSTANT

to return to the INSTANT system.

For disk storage of procedures created using INSTANT,
you must leave INSTANT and return to Logo:

1. Type <CTRL> G to return to Logo.
2. Type <CTRL> T for the full screen of text (TEXT

mode)
3. Type POTS to list the procedures you have created

(plus the system procedures you saw defined as
they were read in)

4. To write all of the listed procedures to your disk,
put your procedure-storage disk in the disk drive,
and type

S A V E " I N S T A N T ^

G - 9 0 T e r r a p i n L o g o T u t o r i a l

Graphics

All the procedures listed will be written to your disk.
In subsequent sessions using INSTANT, READ "IN
STANT from your own disk instead of the Utilities
disk. You will have everything you need to run IN
STANT as well as all previously written original proce
dures.

If you want only the procedures created by INSTANT,
you can use SAVE with two inputs: a filename and a
list of procedures. See the earlier section on Saving
Procedures.

Modifying INSTANT
Like many of the programs on the Utilities Disk,
INSTANT can be expanded or modified to include
more complex commands. To add new single-letter
commands, edit the COMMAND procedure.

T e r r a p i n L o g o T u t o r i a l G - 9 1

(IMPUTATION:
HANDLING NUMBERS

^<^1
< &

^

HANDLING NUMBERS

Perhaps you've begun to wonder if Logo can do any
thing but draw pictures. Have no fear! Like any other
full computer language, Logo can perform a variety of
numerical operations

Logo uses integers (whole numbers like 4,67,1918)
and real numbers (numbers with a decimal part like
4.55, 3.14159) without distinguishing between them.
7/2 (7 divided by 2) is always 3.5 in Logo.

Logo also recognizes "floating point" num
bers, which use a form of scientific notation.
For instance, 5000 can be represented as 5E3
(5 times ten to the exponent 3); likewise,
0.005 can be represented as 5N3 (5 times ten
to the exponent -3). Floating point notation is
useful primarily in representing extremely
large numbers. See the Numbers section of
the Technical chapter for more details.

Arithmetic Operations

When you use a computer, you must type everything
on one line. For the operations of addition, subtraction,
multiplication, and division, Logo uses the following
operators:

as in
A d d i t i o n + 7 + 5 (12)
Subtraction — 7 — 5 (2)
Multiplication *■ 7*5 (35)
D i v i s i o n / 7 / 5 (1.4)

/•^ The star (or asterisk -)K) is used for multiplication to
avoid confusion with the letter x. The slash (/) is used
to keep division on one line.

T e r r a p i n L o g o T u t o r i a l C - i

Computation: Handling Numbers

Raising to powers (exponentiation) uses the procedure
EXPONENT, described below.

Logo will do the arithmetic for you when you give it
an operation for its input. When you type:

FD 26 + 42 Logo will move the turtle 68 steps for
ward;

PRINT 76 * 42 Logo will print 3192;

RT 360/5 Logo will turn the turtle 72.

Hierarchy of Operations

Doing arithmetic on a line does present some prob- ^^
lems, however. There must be rules about which ^)
operation is done first. Try these:

PRINT (7 + 5)/ 2
P R I N T 7 + 5 / 2

In the first, the 7 and 5 are added, to make 12, then the
12 is divided by 2, which gives 6. In the second, the 5
is divided by 2 first, with the result of 2.5, then the 2.5
is added to the 7, giving 9.5.

RULES THE COMPUTER PLAYS BY

(j^\ 1. Parentheses are the first thing the computer looks for* in evaluating an arithmetic expression. It does what
ever is in the parentheses first, according to the rest
of the rules.

2. Multiplication and division are done next, from left ^"^
to right.

c _ 2 T e r r a p i n L o g o T u t o r i a l

r^

Computation: Handling Numbers

3. Addition and subtraction are done last, also from
left to right.

Examples:

4 * 3 + 6 / 3 — 2 * (3 + 2)

Stepl 4 * 3 + 6 / 3 — 2 * 5
Step 2 12 + 2 — 10
Step 3 14 — 10
Step 4 4

2.
4 * (3 + 6) / (3 - 2) * 3 + 2

S t e p l 4 * 9 / 1 * 3 + 2
S tep 2 36 / 1 - f c 3 + 2
Step 3 36 * 3 + 2
Step 4 1 0 8 + 2
Step 5 110

3.
4 * (3 + 6) / ((3 - 2) * 3 + 2)

S t e p l 4 * (9) / ((1) * 3 + 2)
S t e p 2 4 * (9) / (3 + 2)
S t e p 3 3 6 / (5)
S t e p 4 7 . 2

So you see, the order in which the operations are done
can make a considerable difference.

T e r r a p i n L o g o T u t o r i a l c " 3

Computation: Handling Numbers

Outputs, Integer Operators, Functions:
RANDOM, RANDOMIZE, ROUND, INTEGER,
QUOTIENT, REMAINDER, SQRT, SIN, COS
Arithmetic operations give a result, called an output.
When you type an operation at the keyboard, Logo
will tell you that result. Type

24/3 and Logo w i l l t ype
RESULT: 8

RANDOM is another Logo operation which gives a
result. It chooses a random number in the group you
select. You specify the group by giving RANDOM the
next higher number.

T y p e L o g o w i l l o u t p u t

RAN D0 M 10 a number between 0 and 9;
RANDOM 501 a number between 0 and 500.

(Type RANDOMIZE before using RANDOM to avoid
identical sequences of random numbers every time
you turn on the computer.)

The other integer operators also output. ROUND
rounds off a real number to the closest integer:

R O U N D 6 . 4 o u t p u t s 6
R O U N D 2 . 7 o u t p u t s 3
R O U N D - 6 . 4 o u t p u t s - 6
R O U N D - 2 . 7 o u t p u t s - 3
R O U N D 6 . 5 o u t p u t s 7

~ \

C - 4 T e r r a p i n L o g o T u t o r i a l

Computation: Handling Numbers

INTEGER gives the integer portion of a real number:

I N T E G E R 4 . 3 o u t p u t s 4
I N T E G E R 4 . 9 o u t p u t s 4
I N T E G E R - 4 . 3 o u t p u t s - 4
I N T E G E R - 4 . 9 o u t p u t s - 4
I N T E G E R 7 / 2 o u t p u t s 3

QUOTIENT gives the integer part of the quotient of
two numbers:

Q U O T I E N T 7 2 o u t p u t s 3
(the same as INTEGER 7/2)
Q U O T I E N T 1 2 o u t p u t s 0
Q U O T I E N T - 7 2 o u t p u t s - 3

f~^ REMAINDER outputs what is left over from the integer
division:

REMAINDER 7 2 outputs 1
REMAINDER 2 3 ou tpu ts 2

When you use real numbers with QUOTIENT or
REMAINDER, they are ROUNDed to integers before
the division takes place.

SQRT produces the square root of the positive number
you give it:

S Q R T 1 6 0 o u t p u t s 1 2 . 6 4 9 1
S Q R T 1 6 o u t p u t s 4

r
T e r r a p i n L o g o T u t o r i a l C - 5

Computation: Handling Numbers

~ \

SIN and COS output the sine and cosine of the number
given in degrees:

S I N O o u t p u t s 0
S I N 9 0 o u t p u t s 1
C O S 0 o u t p u t s 1
C O S 9 0 o u t p u t s 0

In a procedure you must do something with an output.
If you don't, Logo complains that you don't say what
to do with itYou might PRINT it, assign it to a variable
name, or use it in a graphics command:

R T 3 6 0 / 4 t h e t u r t l e t u r n s r i g h t 9 0
MAKE "A 360/4 the value of A becomes 90
P R I N T : A L o g o p r i n t s 9 0
P R I N T Q U O T I E N T 5 2 L o g o p r i n t s 2 ^
M A K E " B R E M A I N D E R 5 2 : B b e c o m e s 1 '
P R I N T : B L o g o p r i n t s 1

Variables, Global and Local: MAKE
In Logo, you may use a variable anywhere you can use
a number.

Variable names in Logo may be of any length, made up
of any combination of letters, numbers, or the special
characters ! ,"#$. %&? which leave out only the opera
tors, brackets and parentheses, and the single quote.

The name of the variable is preceded by the single set
of double quotes ("). The value of the variable is pre
ceded by dots (: also known as colon).

^

C _ 6 T e r r a p i n L o g o T u t o r i a l

^

Computation: Handling Numbers

Global Variables:

The Logo primitive MAKE gives a value to a variable
which the variable keeps until it is changed with an
other MAKE command. MAKE can be used either in
IMMEDIATE mode or in a procedure. The value as
signed is used in any procedure in which the variable
is used; the value is also stored when a copy of the
workspace is saved onto a disk. Variables created with
MAKE are called Global Variables. Examples:

MAKE "PI 3.14159 gives the variable :PI the value 3.14159

PRINT :PI prints 3.14159

MAKE "MINE "MINK gives :MINE the value MINK

PRINT :MINE prints MINK

MAKE "A :PI gives :A the VALUE of :PI (3.14159)

PRINT :A prints 3.14159

Local Variables:

Local variables are used only in procedures. When a
procedure is running, its local variable(s) have a value.
When the procedure stops, the variable ceases to exist
until the next time the procedure is run. An input to a
procedure behaves as a local variable.

You can also make a variable local to the current pro
cedure with the LOCAL command (added in version
2.0). Any time MAKE is used after the command
LOCAL, the variable is treated as a local and not a
global variable.

T e r r a p i n L o g o T u t o r i a l c ~ 7

Computation: Handling Numbers

Local variables are important because they
keep the workspace from becoming cluttered.
Using global variables when local variables
will do wastes memory space that could be
used for other purposes. Also, you can have
several local variables with the same name in
different procedures, but only one global
variable with a given name.

^

Procedures: TO, END

Any command you can type at the keyboard can be
used in a Logo procedure. To define a procedure,
type TO and the name you have chosen. For exam- /—^^
p i e , t y p e : ^

TO CUBE (to obtain a number multiplied by itself
3 times)

The screen will clear, with the procedure title
TO CUBE at the top and a white line at the bottom
which tells you that you are in EDIT mode and
should use <CTRL> C to complete the definition of
your procedure. (<CTRL> G means gone.) (To do a
<CTRL> C, hold down the <CTRL> key and press
the <C> key.)

Type in the rest of the procedure below, and press
<CTRL> C. (See the APPENDIX for a discussion of
commands used in EDIT mode.)

TO CUBE
P R I N T 4 * 4 * 4

E N D ^

C - 8 T e r r a p i n L o g o T u t o r i a l

Computation: Handling Numbers
r * * + < < * , ^■■■■■m

Type

C U B E L o g o w i l l p r i n t 6 4

You can use a variable to extend the usefulness of this
procedure. Make it print the cube of whatever number
is given it, instead of printing the cube of 4 all the time.
Replace each 4 with the variable name and add it to
the title, so the value of the variable may be brought
into the procedure. You may choose any name for your
variable; a descriptive one is most helpful.

TO CUBE :NUMBER
PRINT :NUMBER*:NUMBER* :NUMBER

END

CUBE now expects a number. This means that you
may not type CUBE by itself any more. When you do,
Logo will tell you that you forgot the input
(:NUMBER).

Now when we type CUBE with a number, Logo will
print the cube of that number.

T y p e L o g o w i l l p r i n t

C U B E 3 2 7
C U B E 3 3 3 5 9 3 7
C U B E 3 3 3 3 6 9 2 6 0 3 7

After CUBE is run, Logo forgets the value of
:NUMBER. Try typing

PRINT :NUMBER

T e r r a p i n L o g o T u t o r i a l C - 9

Computation
m^m><$?M mmm»mmw*&m

:NUMBER is a local variable and has value only within
the procedure in which it is used. :NUMBER could be
used in a variety of procedures and have a different
value in every one.

Interactive Procedures: LOCAL, REQUEST
(RQ)
LOCAL is convenient when you don't want to give a
procedure input immediately, but still want to use a
local variable. This is frequently the case with inter
active procedures, especially if the procedure requires
the user to input more than one variable.

An interactive procedure is one that requires user
input from the keyboard while the procedure is run
ning. As an example of this, we start with a procedure
which randomly picks two numbers and prints their
product.

TO MULTIPLY
LOCAL"X LOCAL"Y
MAKE "X RANDOM 10
MAKE "Y RANDOM 10
(PRINT :X [TIMES] :Y [IS] :X*:Y)

END

LOCAL specifies that its input (in this case X and Y) be
treated as local variable for the rest of the procedure. In
the procedure shown, RANDOM is used to pick values
for the variables. The last line then prints the variables
and their product as part of a sentence.

~ >

c-io Terrapin Logo Tutorial

Computation

/*^\

r^

Note that X and Y do not have values until MAKE is
used. To see this, put PRINT :X between the LOCAL
and MAKE statements.

PRINT usually takes one input which can be a
word, a list, or a number. In this case it has
five inputs, so parentheses must be used to
tell Logo to expect more than the usual
number of inputs.

To make the procedure continue to pick variables and
print answers, add MULTIPLY as the last line in the
procedure (but before END). Use <CTRL>G to stop it.

Now you have a procedure that is good at picking
numbers and telling you the product, but this isn't an
interactive procedure. There is no way for you to do
anything while the procedure is running. Let's change
things so that you have to type the answer to a ques
tion. The line with PRINT will become

(PRINT [HOW MUCH IS] :X [TIMES] :Y [?])

Of course, you'll want Logo to tell you whether the
answer you give is right or wrong. The following
procedure will do just that.

TO TESTANSWER :ANSWER
IF :ANSWER = :X * :Y PRINT [CORRECT] STOP
PRINT [INCORRECT]

END

T e r r a p i n L o g o T u t o r i a l c . n

Computation

This procedure looks to see if the value of ANSWER
equals :X * :Y. If this is TRUE, the procedure prints
CORRECT and stops; otherwise, it prints INCORRECT.

How should you combine the two procedures? If you
add TESTANSWER: ANSWER as the line after the
PRINT command in MULTIPLY, where does
:ANSWER come from?

To allow user input, use REQUEST. This primitive
takes input from the keyboard and makes it into a list
when <RETURN> is hit.

TO MULTIPLY
LOCAL "X LOCAL "Y
MAKE "X RANDOM 10
MAKE "Y RANDOM 10
(PRINT [HOW MUCH IS] :X [TIMES] :Y [?])
TESTANSWER FIRST REQUEST

END

REQUEST takes what you type and gives it to TEST-
ANSWER as input. The command FIRST is needed be
cause REQUEST makes a list; if FIRST were omitted,
the first line of TESTANSWER would compare a
number with a list containing a number, and the pro
cedure would print INCORRECT. What we need is the
first (in this case, the only) item in the list, which is the
number you typed in.

~)

C - 1 2 T e r r a p i n L o g o T u t o r i a l

Computation
/■^̂ •\ f̂rft%fri:3&%*&:*ai; :̂ %̂ >̂ »£•*■>%*■■•>: v..•....- •■*:•.'.v,:"̂ &̂ ?qEaft̂ fry3̂

/ " ^ ^ N

/ • ^ ^ N

Note that TESTANSWER uses X and Y even
though they were not declared in its title line.
A subprocedure always has access to the
variables in the calling procedure(s).

So far MULTIPLY and TESTANSWER could have been
written as one procedure. But what if we wanted to
make the program keep asking for an answer until it
got the right one? To do this, we need a recursive call to
TESTANSWER so it will keep calling itself until you
type the correct answer.

What happens if you add TESTANSWER: ANSWER as
the last line of TESTANSWER? Obviously this doesn't
work! (Try it to see why.) We need to change: ANSWER
in the last line to something else. Hint: look at
MULTIPLY.

Why all this fuss about local variables, whether
created by LOCAL or declared as procedure inputs in
the title line? Global variables take up space. Unless
you have a particular need for a variable that stays
around in the workspace, use a local variable.

Brimgimg Vmlmes Out &f Procedures:OUTPUT (OP)
When the results of running a procedure are to be used
by another procedure, which often happens when the
purpose of a procedure is doing a computation, those
results must be brought out of the procedure for use.

T e r r a p i n L o g o T u t o r i a l C - 1 3

Computation: Handling Numbers

There are two ways of getting values out of a proce
dure:

1. Create a global variable (described above).
2. Use the Logo primitive OUTPUT.

The Logo primitive OUTPUT returns values from the
procedure in which it occurs. The values are returned
to the procedure which called that procedure.

If you run a procedure which uses OUTPUT, the proce
dure will print the OUTPUT on the screen.

If you run a procedure which calls a procedure which
uses OUTPUT, only the procedure you ran will receive
the information from OUTPUT. It will not be printed ^"^
unless there is a PRINT statement.

This is similar to what happens when you do
arithmetic operations. Type

3 + 5

and Logo will print

RESULT: 8

Type

FORWARD 3 + 5

and the result 8 only goes to the FORWARD

The turtle moves, but the 8 is not printed on the screen, ̂ -n.

c _ 1 4 T e r r a p i n L o g o T u t o r i a l

/*^^\

Computation: Handling Numbers

We can change the PRINT statement in CUBE to OUT
PUT to show this:

TO CUBE1 :NUMBER
OUTPUT :NUMBER * :NUMBER * :NUMBER

END

Now if you type

CUBE1 3

Logo will print

RESULT: 27

However, if you type

FORWARD CUBE1 3

the graphics turtle will move forward 27 steps.

_ h&f OUTPUT and Recursion:A Pruscedmre to B& Exponentiation
A recursive procedure is a procedure which calls itself
as a subprocedure. The procedure EXPONENT, shown
below, uses recursion to raise :X to the power of :Y.

TO EXPONENT :X :Y
IF :Y = 0 THEN OUTPUT 1
OUTPUT :X * (EXPONENT :X :Y-1)

END

T e r r a p i n L o g o T u t o r i a l c - i s

Computation: Handling Numbers

In the procedure, Y is used as a counter to make sure
that X is multiplied together the correct number of
times.

How EXPONENT works:

1. Tests for the finish, i.e. Y = 0
2. Multiplies :X by the result of running EXPONENT

with the counter decremented.
1. Tests for the finish
2. Multiplies :X by the result of running EXPONENT

with the counter decremented, and so on until: Y
is decremented to 0.

Example:

EXPONENT 3 4

We shall follow the recursion down through all its
levels and then trace OUTPUT on its way back up.

Going down, each level is put on hold pending the
appearance of a number needed to complete the com
putation. Coming back up, each number is output to
the level above and each computation completed.

^

~ \

C - 1 6 T e r r a p i n L o g o T u t o r i a l

Computation: Handling Numbers

r

Going down:

EXPONENT 3 4

1. Check to see if :Y (4) is 0
2. OUTPUT 3 * the result output by EXPONENT 3 3

Logo must figure out the value of EXPONENT 3 3.

EXPONENT 3 3

1. Check to see if :Y (3) is 0
2. OUTPUT 3 * the output of EXPONENT 3 2

Logo must figure out the value of EXPONENT 3 2.

EXPONENT 3 2

1. Check to see if :Y (2) is 0
2. OUTPUT 3 * the output of EXPONENT 31

Logo must figure out the value of EXPONENT 31.

EXPONENT 3 1

l.Checktoseeif:Y(l)isO
2. Output 3 * the output of EXPONENT 3 0

Logo must figure out the value of EXPONENT 3 0.

EXPONENT 3 0

1. Check to see if :Y (0) is 0; if it is, OUTPUT 1.
/ ^ O U T P U T s t o p s t h e p r o c e d u r e a n d o u t

puts the value 1.

T e r r a p i n L o g o T u t o r i a l C - 1 7

Computation: Handling Numbers

~ i

Going back up:

The 1 is output to the procedure which called EXPO
NENT 3 0, which was EXPONENT 31. This completes
the evaluation in EXPONENT 31, which is output to
the procedure which called EXPONENT 31, which
was EXPONENT 3 2. The process is repeated until the
top level is reached.

The evaluation of EXPONENT 3 4 on the way down
looks like this:

EXPONENT 3 4=3 ^(EXPONENT 3 3)
= 3 *(3 ^(EXPONENT 3 2)
= 3 *(3 #(3 * EXPONENT 3 1))
= 3 * (3 * (3 * (3 * E X P O N E N T 3 0))) ^ .

Since the value output by EXPONENT 3 0 is 1, going
back up this becomes

EXPONENT 3 4 = 3 * (3 * (3 * (3 * (1))))
EXPONENT 3 0 outputs 1

= 3 * (3 * (3 * (3 * 1)))
EXPONENT 3 1 outputs 3

= 3 * (3 * (3 * 3)
EXPONENT 3 2 outputs 9

= 3 * (3 * 9)
EXPONENT 3 3 outputs 27

= 3 * 2 7
EXPONENT 3 4 outputs 81

The 3 is multiplied by itself 4 times, just as prescribed.

Note the use of: Y as a counter which makes sure that
EXPONENT is called exactly 4 times, that is, 3 is multi- ^-v
plied by itself 4 times, or raised to the power of 4. '

C - 1 8 T e r r a p i n L o g o T u t o r i a l

Computation: Handling Numbers

$Me9 GasMe9 Tangent, Parabola, Ellipse,
SETX¥9 HOME, DMAW9 HT

It is easy to graph functions of the form Y = f(X) using
the Logo primitive SETXY, which takes as its inputs
the :X and : Y positions on the Logo screen.

The heart of each procedure is the evaluation of :Yand
the positioning of the turtle (f(:X) is whatever the func
tion calls for):

MAKE "Y f(:X)
SETXY :X :Y

(^ This is more elegantly accomplished by combining
the two operations. For example:

SETXY :X f(:X)

Principal considerations include

1. Keeping the curve on the screen
2. Positioning the curve
3. Scaling for visibility

To position the start of the curve, we might want to
move :X to the left by the amount :C. Our statement
becomes:

SETXY :X-:C f(:X)

T e r r a p i n L o g o T u t o r i a l C - 1 9

Computation: Handling Numbers

To see: Y if it is very small, we might want to multiply
it by a visibility factor :D:

SETXY :X-:C f(:X) * :D

SINE FUNCTION: Y = SIN X

We would like to begin the sine wave at the left edge of
the screen (-140), make it large enough to be visible,
and stop at the right edge of the screen (+140).

To begin drawing at the left edge and yet have :X start
at 0 for the evaluation of :Y, the X position becomes
:X-140.

To see :Y, which will vary between 0 and 1, multiply ^\
by 100 (actually anything up to 120, the vertical limits
of the screen).

The procedure starts out as

TO GRAPH.SIN :X
SETXY :X - 140 100 * SIN :X

END

This computes one point and moves the turtle to it. To
continue the curve, increment :X by calling
GRAPH.SIN with an incremented value:

TO GRAPH.SIN :X
SETXY :X - 140 100 * SIN :X
GRAPH.SIN :X + 5

END

C _ 2 () T e r r a p i n L o g o T u t o r i a l

Computation: Handling Numbers

r^

To stop the curve at the right edge of the screen, insert
a test for the X positon (:X—140):

TO GRAPH.SIN :X
IF :X - 140 > 140 STOP
SETXY :X - 140 100 * SIN :X
GRAPH.SIN :X + 5

END

To draw a sine wave starting at X = 0, type

GRAPH.SIN 0

An axis would improve the graph (DRAW clears the
screen and moves the turtle to the center, HT hides the
turtle):

TO AXIS
DRAW
HT
SETXY 140 0
HOME
SETXY -140 0

END

Now to draw a sine wave with an X-axis, type

AXIS
GRAPH.SIN 0

T e r r a p i n L o g o T u t o r i a l C - 2 i

Computation: Handling Numbers

The final improvement for the sine wave is writing a
procedure to do that typing for us:

TO SINE
AXIS
GRAPH.SIN 0

END

Finally, to draw a sine wave, type

SINE

COSINE FUNCTION: Y = COS X

Substitute COS for SIN in the GRAPH.SIN procedure,
changing its name to GRAPH.COS. Write a superproce-
dure COSINE to call it with AXIS. The easiest way to ^
do this is to edit GRAPH.SIN and SINE. See the editing
sections of the Graphics chapter and the APPENDIX.

TANGENT FUNCTION: Y = (SIN X) / (COS X)

The tangent procedure has some different problems.

Note how :X is incremented slightly if COS :X = 0, to
avoid dividing by 0. Since we don't want to stop the
procedure in the middle of the screen, PU (PENUP) is
used to stop the turtle from drawing when it is simply
wrapping around the screen to get to the off-screen
points. (When the line goes off the edge of the screen,
it continues by entering on the opposite side of the
screen. This is called wrapping.) Using PU requires
adding PD (PENDOWN) to start drawing again.

C - 2 2 T e r r a p i n L o g o T u t o r i a l

Computation: Handling Numbersr e r e g y - ^ " " • " ~ ^ ~ r ^ . " T I Z ^ ^ - _ ,■ ^ ^■ •■ • • : . ' g ; v . " I

TO GRAPH.TAN :X
IF COS :X = 0 THEN MAKE "X :X + 1
IF :X - 140 > 140 STOP
MAKE "Y (SIN :X) / (COS :X)
IF 100 * :Y > 115 PU
IF 100 * :Y < -115 PU
SETXY :X-140 :Y * 100
PD
GRAPH.TAN :X + 5

END

Here Y is evaluated separately because it must be tested
before the drawing step.

PARABOLA: Y = (X * X) / (4 * A)

(^ The vertex of this parabola is at 0,0; the axis is vertical.
A is the distance from the vertex to the focus. Increas
ing A makes a wider parabola; decreasing it makes a
narrower one.

The general formula for this parabola is

(X-H) * (X-H) = 4 * A * (Y-K)

where H is the X co-ordinate and K is the Y co-ordi
nate. H and K are 0 in this example.

In the drawing of the parabola, add PU after AXIS to
avoid leaving a trail to the beginning of the curve.
(This is the same AXIS procedure that is used in the
sine procedure.)

/ ^ ™ " ^ \

T e r r a p i n L o g o T u t o r i a l C - 2 3

Computation: Handling Numbers

Determine the beginning point in the superprocedure
PARABOLA, using the equation again, with 118 the
value for Y (about the largest possible value for Y).

TO PARABOLA :A
AXIS
PU
GRAPH.P (SQRT (118 * 4 * :A» :A

END

TO GRAPH.P :X :A
MAKE "Y (:X * :X) / (4 * :A)
IF :Y > 124 STOP
SETXY :X :Y
PD
GRAPH.P :X + 5 :A

END

With a positive value for :A, this will draw a parabola
above the X axis. To allow use of a negative :A, which
would draw a parabola below the X axis, we must use
the absolute value of :A (:A without its sign) in calcu
lating the starting position of X, since we cannot take
the squareroot of a negative number. We write the pro
cedure ABS to figure the absolute value for us:

TO ABS :X
IF :X < 0 THEN OUTPUT (-:X)
OUTPUT :X

END

OUTPUT stops after it outputs. So if X is negative, it
will change it to positive; if it is positive it will output
it directly. PARABOLA becomes:

^

~ A

q _ 2 4 T e r r a p i n L o g o T u t o r i a l

Computation: Handling Numbers

/""■̂N

Ĉ

TO PARABOLA :A
AXIS
PU
GRAPH.P (-SQRT018 * 4 * ABS :A)) :A

END

Since it is a test for Y that stops the procedure, we
must revise the test to allow for a negative Y:

TO GRAPH.P :X :A
MAKE "Y (:X * :X) / (4 * :A)
IF ANYOF (:Y > 124) (:Y < -124) STOP
SETXY :X :Y
PD
GRAPH.P :X + 5:A

END

To make a family of parabolas, add a recursive call
to PARABOLA (taking care to pick up the pen in
between):

TO PARABOLA :A
AXIS
PU
GRAPH.P (-SQRT(118 * 4 * ABS :A)) :A
PU
PARABOLA :A + 1

END

ELLIPSE FUNCTION:
Y = B * SQRT (1-(X * X) / (A * A))

The center of this ellipse is at 0,0. A is half of the
horizontal axis, B is half of the vertical axis.

T e r r a p i n L o g o T u t o r i a l C - 2 5

Computation: Handling Numbers

The general formula for an ellipse is

(X-H) * (X-H) / (A * A) + (Y-K) * (Y-K) / (B * B) = 1

where H,K are the X and Y co-ordinates of the center,
(0,0) in this example.

The ellipse procedure must solve the problem of Y
becoming negative as X returns to its original value.
Changing the sign of the increment takes care of it.

TO GRAPH.ELUPSE :X :A :B :INC
IF (:X * :X) > (:A * :A) STOP
IF :X = :ATHEN MAKE "INC (-1)
SETXY :X :INC * :B * SQRT (1-(:X * :X) / (:A * :A))
PD
GRAPH.ELUPSE :X + :INC :A :B :INC

END

The SETXY command must be typed as one line. Use
the same AXIS program as you used with the sine
procedure.

TO ELLIPSE :A :B
AXIS
PU
GRAPH.ELUPSE -:A :A :B 1

END

^

q „ 2 6 T e r r a p i n L o g o T u t o r i a l

! & &
v Or "P oP

A°A ^ OP

Np.op,,

$

WORDS & LISTS

INTRODUCTION

So far, all of the procedures that we have described or
encouraged you to write have been non-interactive.
That is, once you started them, they did what they
were designed to do without consulting you further.
The most you might ever have done was press
<CTRL> G to stop them.

Interactive programs are perhaps the most fun of all,
precisely because they interact. They are also poten
tially the most complex. The reason for this is that
while they are underway, they must account for the
unpredictable behavior of the person with whom they
are interacting.

Interactive movement forms the basis for a variety of
video games and simulations. Interactive language
adds attractive features to these games, but it can also
open up a whole new interest area: mad-libs, quizzes,
word games, conversational programs that construct
grammatical sentences and "understand" limited
amounts of natural language, even foreign languages.

There are two ways you can approach this chapter. You
may prefer to go quickly through, skipping all of the
indented text, or you may wish to study those portions
as you work your way through the chapter. As in other
chapters, the indented portions add depth and detail
to the presentation.

The procedures you are asked to type in are used
throughout the chapter, so be sure to save them on your

fmm^ disk when you decide to take a break, and be sure to
read them back in when you start to work on the chap-

ĉ

T e r r a p i n L o g o T u t o r i a l W - l

Words and Lists

ter again. (CHAPTERW would be an appropriate file
name, so you can type SAVE "CHAPTERW and READ
"CHAPTERW.)

In the graphics chapter, you learned about procedures
which had an immediate and visible effect. FD moved
the turtle (and left a trace on the screen if the pen was
down), DRAW cleared the screen, and so on.

This meant that even without writing procedures, you
were able to give Logo several commands in succes
sion and see what their combined effect was. You may
even have forgotten what commands you used, but the
screen "remembered" their effect.

Procedures spared you considerable typing. They also
gave you a way of recording the instructions for your
designs. But the designs themselves didn't depend on
the procedures. They would have grown just as surely
on the screen if you had typed each turtle command
line by line.

In this chapter, you will be learning about primitives
that manipulate Logo "objects." The effects of these
primitives are not graphic and do not accumulate un
less you explicitly instruct them to.

These primitives can be explained and used one by
one, but their real power is most apparent in combina
tion. As a result, the focus of this chapter must be on
building procedures which combine these primitives
in different and varied ways.

Even though there are only roughly a dozen important
new primitives, and even though only about half are

W - 2 T e r r a p i n L o g o T u t o r i a l

^

/*̂ ^̂ ».

Words and Lists

/
f

/#^\

/ ^ • N

used with much frequency, there are many, many
combinations which can be used in creating sophisti
cated and interesting programs.

Here are some of the programs that you will learn how
to write in this chapter:

—Interactive video programs
—Quiz programs
—Programs that write and "understand"

language
—Programs that play games
—Programs that learn

Logo's facility with words and lists makes it ideal for
writing conversational programs, quizzes, pig Latin
translators, programs that teach, and even programs
that learn: in short, all programs that need to manipu
late lists of information.

The chapter is divided into three sections. The first is
devoted entirely to interactive video programs, but in
troduces some procedures and techniques used in the
remainder of the chapter.

The second section is devoted to programs that manip
ulate language (quizzes, sentence generators, etc.) and
programs that build and manipulate knowledge bases.

The third section is devoted to building and manip
ulating more complex knowledge bases, and includes
programs that play games and that learn.

T e r r a p i n L o g o T u t o r i a l W - 3

Words and Lists

Interactive Graphics: READCHARACTER
(RC), TOPLEVEL, STOP
Let's create a program to control the turtle with single
key-presses at the keyboard. The initial design will
provide only four turtle behaviors, FD, RT, LT, and
DRAW, and will control them with F, R, L, and D, re
spectively.

Projects at the end of this section suggest
some additional behaviors to control. Further
additions will become possible with techniques
that you will learn later in this chapter.

The procedures that you will be developing
are similar to those in the INSTANT program
on your Utilities disk. This program is
explained in this guide and in LOGO FOR
THE APPLE II, by Harold Abelson.

^

In this design, the turtle will be moved Forward 10
steps each time the F is pressed. Each time R or L is
pressed, the turtle will turn Right or Left 15 degrees.
(You may choose any amount, of course, not just what
is suggested here.) Pressing D executes DRAW.

The first task is to create a procedure that takes a single
character as input and controls the turtle on the basis
of that character. Its title line might be: ^

TO EASYDRAW CHARACTER

w 4 T e r r a p i n L o g o T u t o r i a l

Words and Lists

f
V

■yj^d^gv^i^fl

or to save typing

TO EASY :CHTR

The logic is quite simple. If the character is an F, then
perform FD 10. In Logo, this is:

IF:CHTR = "FFD10

**>
If you prefer, you can add the word THEN,
and write

IF:CHTR = "FTHENFD10

^ Some people find it easier to read a program
(^ that has the extra word in it. Others find it

more cluttered that way. We will leave it out
in this chapter.

Similarly, if the character is an R, perform RT 15.

IF:CHTR = "RRT15

There should be some way of telling the program when
we want to quit drawing to do something else. The let
ter Q (for Quit) can be used. If that character is the in
put, the procedure will perform NODRAW and
TOPLEVEL.

NODRAW gets out of draw mode and clears the text
screen. TOPLEVEL is the Logo primitive that tells
Logo to stop executing a program and return to im
mediate mode to wait for a new command.

T e r r a p i n L o g o T u t o r i a l V V - 5

Words and Lists

~ i

It is important to know the difference be
tween TOPLEVEL and STOP. STOP stops the
execution of the procedure in which it is
found, but does not stop other procedures
that may also be running. TOPLEVEL stops
an entire program. Every procedure that Logo
was running stops, and Logo returns control
to the user.

The whole procedure might look like this:

TOEASY:CHTR
CHTR = "FFD10
CHTR = "RRT15
C H T R = " L L T 1 5 ^ \
C H T R = " D D R A W j
CHTR = "Q NODRAW TOPLEVELIF

END

Define this procedure. Type carefully, making certain
that no spaces are left between the : and the word
CHTR, or between the double-quote character and the
single letter that follows it. Notice also that there is
only one double-quote character on each line.

We will explain in greater detail later, but
provide this brief version for the curious. The
words

" F i n l F : C H T R = " F F D 1 0 a n d
"CHAPTERW in SAVE "CHAPTERW

~)

W - 6 T e r r a p i n L o g o T u t o r i a l

Words and Lists
/^^^*\

are quoted in order to tell Logo not to treat
them as procedures. The words FD and SAVE
are executed by Logo, but we want "F to be
just plain F, literally, and not have Logo try to
execute it as an instruction. Similarly, we
want "CHAPTERW to be the name of a file—
just a name, not something to do. The quoted
word ends at the next blank space, so no final
quote is needed.

Do not add a final quote, since Logo will then
assume you mean to say something like: If the
character is an F followed by a double-
quote-mark, then . . . This is not at all what
you want. To demonstrate this, type

PR "A"

z^W^\

After the procedure is defined — remember to type
<CTRL>C — you can try it out by typing

EASY"F
EASY"R
EASY"Q

This is definitely not an improvement over typing FD
10 RT 15 ND, but it contains all the logic for the pro
gram we intended to create. Now what is needed is
another procedure — let's call it QUICKDRAW —
whose sole purpose is to wait for a key to be pressed at
the keyboard and to give that character to EASY as an
input.

T e r r a p i n L o g o T u t o r i a l W - 7

Words and Lists

2. Add SHOWTURTLE (ST) and HIDETURTLE (HT).

/ " " ^ ^ K

QUICKDRAW will use the Logo primitive
READCHARACTER, abbreviated RC, to report what
key has been pressed at the keyboard. To make
QUICKDRAW continue endlessly (until a Q is
pressed), QUICKDRAW calls itself as a subprocedure
and looks like this:

TO QUICKDRAW
EASY RC
QUICKDRAW

END

The line EASY RC in QUICKDRAW tells Logo to read a
character typed by the person using the computer and
to use that character as the input to EASY. EASY fig
ures out what action to perform based on what charac- ̂ ■■s
ter it receives. If it gets an R, it performs a RT 15.

Even though all five lines of EASY are executed each
time EASY is called, at most one action will be taken,
because only one of the IF tests will be true.

Projects with RC: Extending QUICKDRAW
1. By using the same logic you can add other com
mands to EASY. Teach the procedure how to control
the pen (PU or PD) in a single keystroke. (You might
assign U to the command PU and P to the command
PD, or you might choose D for PD, in which case you
would need something else for DRAW.)

W - 8 T e r r a p i n L o g o T u t o r i a l

Words and Lists

/̂ ^̂ *\
i

/""^^N

3. Teach EASY to change the pen color with two key
strokes. The first keystroke (C, for Color) will run a pro
cedure that waits for a second keystroke. If that second
keystroke is a 0 through 6, the pen will be set to that
color. If any other key is pressed, nothing happens.

The job could, of course, be done with one keystroke,
representing each pen color with a different key. You
might use the number keys directly, or use letters that
represent the color names (for example, W for White, G
for Green, etc.).

A disadvantage of using the numbers is that it would
be nice to have them available for use as' 'multipliers''
to multiply the effect of the next command. You will
learn a technique for doing this in the next section.
Choosing letters for each color is acceptable, although
it requires that a person remember codes for each color.

4. Use the same technique to change background
color.

Changing the Value of a Variable: MAKE,
PRINT(PR)
We must take a short detour from the QUICKDRAW
program. When you return to it, you will be able to
write procedures which allow multiples of the single
key commands in EASY. For example, 3F will make
the turtle go forward 3 * 10 or 30 turtle steps.

The Logo primitive MAKE is used in several ways. In
this section, we will illustrate one way, and in another
section of this chapter, when we define words, lists,
variables, input, and output more carefully, you will
learn more of the subtleties of MAKE.

T e r r a p i n L o g o T u t o r i a l V V - 9

Words and Lists

A metaphor for MAKE: When you say

MAKE"NUM7or
MAKE "PERSON [MARGARET TRUMAN]

it is as though you are creating locations or boxes
called NUM and PERSON and tossing a 7 into the first
and the list [MARGARET TRUMAN] into the second.
To find out what is in a particular box called NUM, the
Logo command is THING "NUM or, more commonly,
just :NUM, meaning the thing or value that is in the
box named NUM.

Of course, you have been using names to refer to values
all along. We will use the new metaphor to translate a
procedure in a new way.

TO SHAPE :LENGTH:SIDES
REPEAT :SIDES [FD :LENGTH RT360/:SIDES]

END

This procedure tells the turtle how to draw a SHAPE
whose features will be found in boxes that the proce
dure refers to as LENGTH and SIDES. The procedure's
first instruction is to look in its SIDES box for a
number, and REPEAT the following list of commands
that number of times — go FORWARD the dimension
found in its LENGTH box, and turn RIGHT however
many degrees is equal to 360 divided by the number it
found in the box named SIDES.

At the moment that you type

SHAPE 73 4 or SHAPE 15 6

W - l 0 T e r r a p i n L o g o T u t o r i a l

^ « ^ ^ ^ v

^ ^ ^ ^ K

^

r

/^^\

Words and Lists

Logo puts the 73 or 15 in a location (think of it as a box)
that the SHAPE procedure refers to as LENGTH and
puts the 4 or 6 into another location that SHAPE refers
to as SIDES.

It is important to remember that LENGTH and SIDES
are names that SHAPE uses to keep track of these num
bers, and that no other procedure knows what SHAPE
keeps in the boxes or even that the boxes exist! Further,
those boxes cease to exist after SHAPE finishes its
work.

Please note, however, that if SHAPE had
called any subprocedures during its execu
tion, those subprocedures would also have
had access to the values in SHAPE'S boxes.

Before getting back to MAKE, define SHAPE as shown
above and then type

SHAPE 50 5

While SHAPE is operating, it executes the command
FD :LENGTH, telling FD to move the turtle forward 50
turtle steps, the number of steps in the box LENGTH. If
the 50 is still left in the box after SHAPE has finished
drawing its pentagon, you should still be able to use it.

Try typing FD :LENGTH to see what Logo will do. Your
screen should look like this:

FD :LENGTH
r " T H E R E I S N O N A M E L E N G T H

T e r r a p i n L o g o T u t o r i a l W - l 1

Words and Lists

Now back to MAKE. MAKE can assign a value to a box
or change the value that is in the box, and it can do it
equally well in or out of a procedure.

Type MAKE "LENGTH 10 to create a box named
LENGTH and place a 10 in it. Type DRAW to clear the
screen, and then type FD :LENGTH. The turtle will
move forward 10 turtle steps. Type

RT144
FD 1ENGTH

This box did not disappear. It still exists and still has a
10 in it. Type

PRINT :LENGTH

Logo should print 10.
~ i

This kind of variable, defined outside of a
procedure, is called a Global variable. See the
explanation of global and local variables in
the chapter titled Computation.

Since there is already a box called LENGTH with a 10
in it, you might think that you could now type just
SHAPE 4 to get a four-sided shape with a size of 10.

If you try that, Logo will complain that SHAPE needs
more inputs. Because SHAPE was defined to take two
inputs, it must always be given two inputs.

T y p e ^

SHAPE 50 4

W - 1 2 T e r r a p i n L o g o T u t o r i a l

/ ^

Words and Lists

When it executed FD :LENGTH, how far did the turtle
move? Not 10, but 50. And now that the square is
drawn, type

FD :LENGTH

How far did the turtle move this time? Not 50, but 10.
Type PRINT :LENGTH to Logo. Again Logo should
print 10.

A summary of what happened: You told Logo to MAKE
"LENGTH 10. Both before and after running SHAPE
(with its own variable of the same name set to 50), you
were able to show that LENGTH really did have the
value 10. Whether you typed PRINT :LENGTH or FD
:LENGTH, LENGTH represented 10.

However, SHAPE, even though it had a variable of the
same name, did not seem to know about the 10 and did
not change it to 50, even though that is what SHAPE
considered LENGTH to be.

Until you have had a chance to write enough proce
dures and have had more experience with variables
and values, they tend to remain confusing, but re
membering one principle may help.

When a procedure has variables in its title line, the
values of those variables inside the procedure depend
entirely on the values given to the procedure as inputs.
This is true regardless of the existence or values of
variables with the same names that may be found
elsewhere in a program.

T e r r a p i n L o g o T u t o r i a l W - l 3

Words and Lists

One more experiment with variables and MAKE before
returning to QUICKDRAW. Type

PRINT :NUM

It should reply:

THERE IS NO NAME NUM

(If it prints something different from that, type

ERNAME"NUM

and start again!)

N o w t y p e ^ "■n

MAKE "NUM 5 and on the next line type
PR :NUM

(PR is the abbreviation for PRINT.) Now it should reply
by printing a 5.

Define these two very similar procedures:

T0F00
PR:NUM
MAKE"NUM2*:NUM
PR :NUM

END

T0F00L:NUM
PR:NUM
M A K E " N U M 2 * : N U M - * s
PR :NUM

END

W - 1 4 T e r r a p i n L o g o T u t o r i a l

Words and Lists

r -

r-

After you have defined them and before you run them,
type PR :NUM again. Logo will still reply 5.

Now, in order and one at a time, type the following
commands to Logo. We will explain the mystery
afterward.

F00
PR:NUM
F00L4
PR:NUM
F00
PR:NUM
F00L3
PR:NUM

What's happening?! FOO and FOOL have absolutely
identical insides, and yet their behavior is so very dif
ferent. You printed the value that is inside the box
named NUM before and after running each procedure.

FOO knew about what Was in that box and also
changed it, but FOOL did neither. Before and after
FOOL, the value in NUM remained the same — even
though it appears to have two completely different
values inside FOOL.

The explanation is in the title line. As mentioned ear
lier, when a procedure's title line contains a variable
name in it, that name refers to a totally private box
created just for that procedure.

So FOO could use the value of NUM that was lying
around at the time, and could also change it. But FOOL

T e r r a p i n L o g o T u t o r i a l W - l 5

Words and Lists

z ^ ^ ^ ^ t .

had access only to its private box, which happened to
have the same name, but is altogether a different box.

Whenever the name NUM was used inside FOOL,
FOOL took it to mean its own box of that name. It was
not the public box named NUM that FOOL printed and
changed, but only FOOL's NUM. As soon as FOOL
stopped running, it took its NUM with it.

When you then typed PR :NUM again, you had no ac
cess to FOOL's private box; instead, you referred to
everyone's public box named NUM. The private vari
able is called a local variable, and the public one is a
global variable.

Logo version 2.0 includes the command ^)
LOCAL, which allows you to create local
variables without declaring them in the title
line. An example:

TO DEMO.LOCAL
LOCAL "VALUE
MAKE "VALUE RC
PR :VALUE

END

Consult page C-7 for a full discussion of LOCAL.

Admonition: Unless you really intend to make a vari
able public and available for everybody to use and
change, don't make global variables. They are trouble
makers (in large programs) precisely because any
body is free to fool around with them. ^^)

W - i 6 T e r r a p i n L o g o T u t o r i a l

/̂ ^^^

/ ^ * S

/^^*\

Words and Lists

On the other hand, the great virtue of global variables
is that they survive even after a procedure is finished.
When you need to have a value remembered even after
the procedure that created it is finished working, use a
global variable.

Otherwise avoid global variables. It is almost never
good style to use MAKE when passing a variable to a
procedure in the title line can be done easily.

Projects with MAKE: More Extensions to
QUICKDRAW
5. Teach EASY to recognize digits and use them to
multiply the effect of the very next keypress. For
example, the effect of typing 3F, should be either FD 30
or REPEAT 3 [FD 10]. You decide which.

If the character 3 is typed to RC, RC's output, which
EASY knows as CHTR, can be used both in tests such
as IF :CHTR = 3 and in numerical expressions such as
:CHTR + 5. You may also find the Logo primitive
NUMBER? useful. The test NUMBER? :CHTR is true
for all characters 0 through 9.

Project 5 is a reasonable use of MAKE because it re
quires remembering a number from one execution of
EASY to the next. A command like MAKE "MULTIPLE
:CHTR will put the current value of CHTR into a box
named MULTIPLE.

The contents of the CHTR box will be forgotten when
EASY stops, but since MULTIPLE will be a global vari
able, the value in that box will not be forgotten and can
be used until it is changed.

T e r r a p i n L o g o T u t o r i a l W - l 7

Words and Lists

6. Type MAKE "PENPOS [DOWN] and then define
and experiment with the following procedure.

TO PEN
IF :PENP0S = [DOWN] PU MAKE "PENPOS [UP]

ELSE PD MAKE "PENPOS [DOWN]
PRINT SENTENCE [THE TURTLE'S PEN IS NOW] :PENP0S

END

The procedure contains at least one primitive
(SENTENCE) that you have not seen before, and an in
teresting use of a global variable. When you under
stand how this procedure works, include it in EASY.

7. Write a similar procedure for ST and HT.

Programs that Interact without Waiting: RC?)
Until some key has been pressed, RC cannot output a
message saying which key. That is why QUICKDRAW
always waits until a character is typed. Every time it
runs RC, RC waits until it has something to report back
to EASY.

Sometimes, though, you want the program to keep
going while waiting for the user to type something. For
example, in video-action-games, objects are supposed
to keep moving on the screen whether or not the player
touches the keys or twiddles the knobs.

Let's design a program in which we drive the turtle like
a car. The turtle will always be moving, but we can in
crease or decrease its speed and can change its direc
tion. In order to have it moving constantly, we will ^_
n e e d a l o o p s o m e t h i n g l i k e t h i s :)

W - l 8 T e r r a p i n L o g o T u t o r i a l

Words and Lists

r

r

TO LOOP
FD :DIST
LOOP

END

Make DIST have some small initial value, like 1 or 2, by
typing MAKE "DIST 2. Then run LOOP. The turtle will
slowly crawl across the screen.

To be more flexible, LOOP should check to see if the
person has typed anything, and, if so, should take
some action before moving the turtle again. RC? is the
primitive that checks to see if a character has been
typed.

The logic is this: If the person has typed a character,

IFRC?

then read the character, and control the turtle accord
ingly:

EASY RC

So the completed LOOP would look like this:

TO LOOP
IF RC? EASY RC
FD :DIST
LOOP

END

Define LOOP and experiment with it using your EASY
/"■^ just as it is. How does LOOP behave differently from

QUICKDRAW?

T e r r a p i n L o g o T u t o r i a l W - l 9

Words and Lists

~)

As it is written, EASY does not give sensitive control
over the speed of the turtle. Pressing F does give a burst
of distance, but the turtle settles back to the same slow
crawl immediately afterward.

Look at LOOP to see what determines the turtle's
speed. Now study EASY to see why it does not alter
that speed. Even though EASY is not quite what is
needed for this program, still it provides a number of
features that are just as appropriate for LOOP as they
are for QUICKDRAW.

So that you can make changes to an EASY-like proce
dure without changing EASY itself (which is just fine
for QUICKDRAW), make a copy of EASY using a dif
ferent title. To do this, edit EASY and change the title
in the editor to ACTION. Then, when you define the
procedure, it will be named ACTION.

EASY is still around, as before, but a new copy titled
ACTION now exists also. If you have been doing the
projects, your copy of EASY (and, therefore, ACTION)
will no longer look like the original. But if it did, it
would look like this:

/ * ^ ^ ^ t \

TO ACTION: CHTR

F
END

CHTR = "FFD10
CHTR = "RRT15
CHTR = "LIT 15
CHTR = "D DRAW
CHTR = "Q NODRAW TOPLEVEL

Do you see that although ACTION controls the turtle's ^^
movement, it does not change :DIST, and therefore)
does not affect the turtle's speed?

W-20 Terrapin Logo Tutorial

/^^ \

[

Words and Lists

Instead of having F move the turtle directly, it could
increase the distance that the turtle moves each time
through LOOP. The logic might be like this — If the
character typed is F

IF :CHTR = "F

make the distance to travel 2 greater than it was the last
time.

MAKE"DIST:DIST + 2

If F stood for Faster, S could stand for Slower and de
crease DIST.

A working version of ACTION might look like this:

TO ACTION :CHTR
CHTR = "RRT15
CHTR = "LLT15
CHTR = "F MAKE "DIST :DIST + 2; FASTER
CHTR = "S MAKE "DIST :DIST - 2; SLOWER
CHTR = "D DRAWIF

END

When you press the F key, the distance that the turtle
will move during each loop increases by 2 steps. The S
key decreases the number of steps per loop.

Define ACTION in one of the ways suggested above,
and write a START procedure like this one:

TO START
MAKE "DIST 0
LOOP

END

T e r r a p i n L o g o T u t o r i a l W - 2 1

Words and Lists

Remember to edit LOOP so that it uses ACTION in
place of EASY.

Now type START and experiment with controlling the
turtle. With practice, you can learn to control it well
enough to draw even complicated figures.

Fro/ecte with EC, EC?: EMemdons to LOOP
8. By changing LOOP so that both the turtle's position
and heading are updated each time through the loop,
the turtle can then draw curves. Here is how LOOP
would look:

TO LOOP
IF RC? ACTION RC
FD :DIST
RT :ANG
LOOP

END

Design and make some changes to ACTION and
START to take advantage of the new capabilities of
LOOP.

9. Add a feature to stop the turtle. Experiment also
with three new commands, one of which does MAKE
"DIST (- :DIST), another of which does the same for
ANG, and the third of which makes both DIST and
ANG negative. Try to gain enough skill at controlling
the turtle to get it to write your name in cursive script.

^

^

W - 2 2 T e r r a p i n L o g o T u t o r i a l

Words and Lists

m ^ ^ \

z^^\

INTERACTIVE LANGUAGE

Don't Skip This Section!
MEMBER?, EMPTY?
Right now, please define two procedures, MEMBER?
and EMPTY?, that will be used throughout the re
mainder of the chapter. (If you have Terrapin Logo
Version 2.0 or beyond, these are already provided as
primitives, so you need not define them yourself and
may skip to the next section.)

Type carefully. Make certain that you leave no space
between: and the word that follows it, and that you do
not leave out the question marks in the procedure
titles.

TO MEMBER? :ELEMENT :0BJECT
IF EMPTY? :0BJECT OUTPUT "FALSE
IF :ELEMENT = FIRST :0BJECT OUTPUT "TRUE
OUTPUT MEMBER? :ELEMENT BUTFIRST :0BJECT

END

TO EMPTY?: OBJECT
OUTPUT ANYOF :0BJECT = [] :0BJECT = "

END

It is worth the effort to save these procedures in their
own separate file as well as with the work you are
doing in this chapter. That will allow you to read them
into your workspace whenever you need them without
reading in everything else you have ever worked on.

s^*\

T e r r a p i n L o g o T u t o r i a l W - 2 3

Words and Lists

/^^^\

For now, these procedures will be explained only as if
they were primitives; we will show how they are to be
used, but not how they work. Later in the chapter, both
will be explained in greater detail.

MEMBER? takes two inputs—a word and a list—and
outputs the value "TRUE if the word is an element of
the list. (You can also give MEMBER? a character and a
word, and it will return "TRUE if the character is part
of the word.)

EMPTY? takes one input and outputs "TRUE if the
input is the empty list or the empty word. We will
explain this in greater detail later on.

To see what MEMBER? does, try the following com
mands.

MEMBER? "DOG [THE DOG BARKED]
MEMBER? "CAT [THE DOG BARKED]
MEMBER? "U "AEIOU
MEMBER? "G "AEIOU
MEMBER? "4 "1234XYZ

Your screen should look like this:

MEMBER? "DOG [THE DOG BARKED]
RESULT: TRUE
MEMBER? "CAT [THE DOG BARKED]
RESULT: FALSE
MEMBER? "U "AEIOU
RESULT: TRUE
MEMBER? "G "AEIOU
R E S U L T : F A L S E ^
M E M B E R ? " 4 " 1 2 3 4 X Y Z >
RESULT: TRUE

W - 2 4 T e r r a p i n L o g o T u t o r i a l

Words and Lists
/^^^\

If these are not the results you get, check the proce
dures carefully, character by character, to make certain
that they are exactly as shown above. After you have
checked, save the procedures.

Some Friendly Introductions: SENTENCE
(SE), REQUEST(RQ), LPUT9 FPUT

If you did project 6 above, you have already seen the
Logo primitive SENTENCE used to combine two
pieces of text into a single sentence. In the procedure
in project 6 the line read

PRINT SENTENCE [THE TURTLE'S PEN IS NOW] :PENP0S

^ When PENPOS was [DOWN], the effect of that line wasto print

THE TURTLE'S PEN IS NOW DOWN

When PENPOS was [UP], the effect of that line was to
print

THE TURTLE'S PEN IS NOW UP

Define the procedure GREET. You may wish to spell
out PRINT and SENTENCE fully or to abbreviate them.
Both forms of the procedure are shown.

Fully spelled out:

TO GREET :PERS0N
PRINT SENTENCE [NICE TO MEET YOU J :PERS0N

END

T e r r a p i n L o g o T u t o r i a l W - 2 5

Words and Lists

~ i

or abbreviated:

TO GREET :PERS0N
PR SE [NICE TO MEET YOU,] :PERS0N

END

Run the procedure GREET, giving it a person's name as
input. For example:

GREET [GEORGE]
GREET [GEORGE WASHINGTON]

GREET has a simple behavior. Whatever its input,
GREET prints a sentence composed of the words NICE
TO MEET YOU (with a comma at the end) and that in
p u t . ^ N

Now we will create a procedure which uses GREET in
a brief friendly conversation. The behavior of the new
procedure will be a bit more complex. It will start up
with no information at all (no input), and will ask the
person to type his or her name. Then it will use GREET
to greet the person. To do this, it must give GREET an
input consisting of whatever the person typed.

Let's write the procedure as we review its behavior. It
needs no inputs, so its title line could be TO FRIENDLY.
It asks the person it meets to type a name: PR [WHAT'S
YOUR NAME?]. It then gives GREET an input con
sisting of whatever the person types: GREET REQUEST.

REQUEST (abbreviated RQ) is a Logo primitive that
tells a procedure 1) to wait for a person to type a line
and press <RETURN> and 2) to output that line as a ^^
list that can be used by a procedure.

W - 2 6 T e r r a p i n L o g o T u t o r i a l

Words and Lists

Amrn^

Here, REQUEST'S output is used as GREET's input.
Define FRIENDLY.

TO FRIENDLY
PR [WHAT'S YOUR NAME?]
GREET REQUEST

END

To run it, type FRIENDLY (remember, no input!) and
press <RETURN>. When it asks, type your name (and
press <RETURN>). You do not need to type brackets
or other special decorations; just your name will do.
Run it again, but this time, when it asks for your name,
press <RETURN> without typing anything at all.
Your screen will now look something like this:

FRIENDLY
WHAT'S YOUR NAME?
HANNIBAL THE TURTLE
NICE TO MEET YOU, HANNIBAL THE TURTLE
FRIENDLY
WHAT'S YOUR NAME?

NICE TO MEET YOU,

REQUEST can return an empty list, indicating that the
person typed nothing, but GREET is not smart enough
to know what to do about that. It would be nicer if
GREET could recognize an empty input and respond
differently.

Here's a version of GREET that does that. We will use
the command EMPTY? to check for bashful typists.

T e r r a p i n L o g o T u t o r i a l W - 2 7

Words and Lists

TO GREET:PERSON
IF EMPTY? :PERS0N PR [OH! YOU MUST BE QUITE SHY] STOP
PR SE [NICE TO MEET YOU,] :PERSON

END

Edit GREET to insert the new line and try it again, as
you did before.

FRIENDLY
WHAT'S YOUR NAME?
HANNIBAL THE TURTLE
NICE TO MEET YOU, HANNIBAL THE TURTLE
FRIENDLY
WHAT'S YOUR NAME?

G *

OH! YOU MUST BE QUITE SHY

This time GREET is better about handling the blank re
sponse, but it apparently has a terrible memory! After
all, it has already met HANNIBAL THE TURTLE, and
should have said something more like GOOD TO SEE
YOU AGAIN rather than NICE TO MEET YOU.

Helping the computer remember names brings in a
whole new idea. For GREET to remember, it must be a
learning program. It must keep a list of the people it
has already met, and, when it gets a person's name, it
must be able to check to see whether that name is on its
list. If the person is a member of the list of known
people

IF MEMBER? :PERS0N :KN0WN

then GREET should print some appropriate response
and then stop.

W - 2 8 T e r r a p i n L o g o T u t o r i a l

Words and Lists

r̂

PR SE [GOOD TO SEE YOU AGAIN] :PERSON STOP

If the person is not a member of that list, then GREET
should say what it did before. It should also stick the
person's name at the end of the list of known people.
That is accomplished by taking the list out of the box
named KNOWN, tacking the person's name at the end
of it, and placing the result back in the box.

MAKE "KNOWN LPUT :PERS0N :KN0WN

LPUT takes two inputs, an object (in this case
PERSON) and a list (in this case KNOWN), and puts
the object in the list as the last element. LPUT ab
breviates LastPUT, but there is no fully spelled out
name of the primitive. (Its companion FPUT, for
FirstPUT, will put in an appearance later on.)

Here is GREET as it is now designed.

TO GREET:PERSON
IF EMPTY? :PERS0N PR [OH! YOU MUST BE QUITE SHY] STOP
IF MEMBER? :PERS0N :KN0WN PR SE [GOOD TO SEE

YOU AGAIN] :PERS0N STOP
PR SE [NICE TO MEET YOU,] :PERS0N
MAKE "KNOWN LPUT :PERS0N :KN0WN

END

Edit it to include the new changes, and when it is
defined, type

FRIENDLY

What happens? Ah! Logo complains that there is no
list of known people.

T e r r a p i n L o g o T u t o r i a l W - 2 9

Words and Lists

Before GREET has met any people, the list may have no
names in it, but it must still exist in order to be
checked. That is why Logo said

THERE IS NO NAME KNOWN

This problem is solved by typing

MAKE "KNOWN []

Type

PRINT :KN0WN

and notice that just an empty line is printed. Now type

F R I E N D L Y ^

again. After it finishes greeting you, type

PRINT :KN0WN

again and note what you see. Play with it for a while,
perhaps by typing

REPEAT 10 [FRIENDLY]

Introduce new people and reintroduce old people.
Type

PRINT :KN0WN

to see what its memory contains. (If the program is not
being friendly, check for errors.)

W - 3 0 T e r r a p i n L o g o T u t o r i a l

^ i

Words and Lists

/•^^w

/*^^\

Finally, some fine points. When the person has been
too shy to type a name, let GREET be a bit pushier. In
stead of just stopping, it can ask again. How? By run
ning FRIENDLY before stopping. The line might look
like

IF EMPTY? :PERS0N PRINT [DON'T BE SHY PLEASE TELL
ME.] FRIENDLY STOP

Edit GREET again, making this last change, and exper
iment with it. Notice that even after you have edited
GREET it remembers the people it had met earlier. Any
time you want to, you can make it forget everybody by
typing

MAKE "KNOWN []

to empty out its list. You can also type

EDIT NAMES

and change the contents of the name KNOWN at will.
When you do that, make sure when you are finished
that all of the left and right brackets match up prop
erly!

There are two more features that would make GREET
seem really like an intelligent program. Try typing I
DON'T WANT TO TELL YOU, or NONE OF YOUR
BUSINESS, or even MY NAME IS PAUL when
FRIENDLY asks your name. GREET should certainly
not say NICE TO MEET YOU, NONE OF YOUR
BUSINESS.n

T e r r a p i n L o g o T u t o r i a l W - 3 1

Words and Lists

It would be nice if GREET could be given enough
knowledge of English to recognize at least these cases
and respond properly. Also, it would be nice if both
GREET and FRIENDLY had a bit more variety in what
they said. You will be able to make both of these im
provements by the end of this chapter.

First you must learn some new primitives and pro
gramming techniques.

Interlude: Clearing the Text Screen with
CLEARTEXT
Type CLEARTEXT to Logo. While working on this
chapter you will often need to clear the text screen.
CLEARTEXT has no abbreviation, so you might want
to define an abbreviation.

TOCT
CLEARTEXT

END

After defining CT, and without typing any graphics
commands, mess up the text screen some. Typing the
following lines should create plenty of mess:

ABC
+

Messy enough? Now type CT. Ah, if only all cleaning
up were that easy.

^

^

/*^^^\

W - 3 2 T e r r a p i n L o g o T u t o r i a l

Words and Lists

/*^^\

Objects: Producing RESULTS as Output, and
Using Them as Input
The best way to come to understand Logo objects well
is to use them in a variety of contexts. A formal defini
tion will come later, but some experiments are needed
now.

Type

5<RETURN>
[APPLES AND ORANGES] <RETURN>
"BEEP <RETURN>

(Don't forget the double-quote at the beginning of
"BEEP.)

In each case Logo responds RESULT: followed by the
object you typed.

5
RESULT: 5
[APPLES AND ORANGES]
RESULT: [APPLES AND ORANGES]
"BEEP
RESULT: BEEP

In two of the cases Logo typed exactly what
you typed. But in the third case, Logo typed
the word BEEP without a double-quote mark.

Here is the explanation. The object you typed
was the word BEEP. The double-quote mark
was merely to tell Logo that you were typing
an object and not the name of a procedure.

T e r r a p i n L o g o T u t o r i a l W - 3 3

Words and Lists

Typing "FRIENDLY (with the quote-mark)
will have the same effect. Typing FRIENDLY
(without the quote-mark) will run the proce
dure that you wrote in the last section.

The double-quote is not part of the object; it is
just a marker. Neither numbers nor lists can
be procedure titles, so Logo does not need any
special markers to help it recognize those as
objects.

Also, words that are already inside lists, like
APPLES or AND, need no special markers.
Logo will not try to run them unless you
explicitly tell it to.

If an object is "given to" Logo in immediate mode,
Logo announces it with the word RESULT:. If an object
is "given to" PRINT as an input, PRINT prints the ob
ject on the screen.

PRINT,, too, changes the appearance of what you type
slightly. Using the same three examples, PRINT 5,
PRINT [APPLES AND ORANGES], and PRINT "BEEP,
both of the last two are printed without their punctua
tion.

PRINT doesn't show the marker or the outer brackets
that surround a list, but merely the object and the list
elements themselves.

< % .
Even though we have been playing with a number (5),
a list ([APPLES AND ORANGES]), and a word (BEEP)
— all abstractions—we think of these very concretely,

^

W - 3 4 T e r r a p i n L o g o T u t o r i a l

Words and Lists

/ ^ ^ N

/"■ N̂

/ t * I ^ \

as if they were solid objects that can be tossed back and
forth among players in a game.

This metaphor is very useful in Logo programming.
Procedures are the players. You make up the rules of
the game, deciding what the behavior of each proce
dure will be, what object (if any) a procedure should
create, and who should receive the object after it is
made.

There are ways of giving objects to Logo in immediate
command mode other than by placing them there
yourself. You can let a procedure create them and place
them there.

At the beginning of the section, you typed MEMBER?
"G "AEIOU and Logo announced that the object
FALSE was given to it as a result. Here are some other
ways of getting procedures to hand objects to Logo.

RANDOM 100
FIRST :KN0WN

The primitive RANDOM outputs a random number
from 0 up to (but not including) its input. FIRST out
puts the first element of the object that is its input. (In
this case, the object is a list from the box named
KNOWN that you created earlier in the chapter.)

In the next two lines are two other primitives that out
put objects. It may be harder to recognize the primi
tives this time, because you are probably not used to
thinking of them as primitives.

5 + 6
: KNOWN

T e r r a p i n L o g o T u t o r i a l W - 3 5

Words and Lists

The first primitive is the +. It takes two inputs, one on
each side of it, and outputs their sum if they are num
bers.

The second primitive is the: (which is a special kind of
abbreviation for THING). It takes one input, attached to
it on the right, and outputs the object that is found in
the box of that name. (The box, KNOWN, was created
earlier as part of the FRIENDLY program.)

c^ There are only two ways of creating objects. You can
put them there, yourself, or a procedure or primitive
can create them.

Some primitives create objects as output and others
don't. For example, if you type FIRST 37, Logo an
nounces the object that FIRST outputs. (What is it?)
But if you type PRINT 37, the object simply appears on
the screen and cannot be used by other commands.

Some primitives require objects as input and others
don't. If a primitive does need an object as input, it
does not care whether that input is put there by you, or
is the result of running another primitive.

So, in the command PRINT FIRST :KNOWN, the object
that PRINT needs as its input is created by FIRST and
supplied as its output.

Writing Procedures that Create and Output
Objects: OUTPUT

Except for the two procedures MEMBER? and
EMPTY? with which we began this section, you have
never written a procedure that creates an object and
outputs it for another procedure to work with. Such a

/ ^ ^ ^ ^ K

~1

W - 3 6 T e r r a p i n L o g o T u t o r i a l

Words and Lists
[ag*S<frl';qs-':-'«fê ■„•■■■ .v. ; .■■?:;■'.,'.■ .-..ft,- --, ■ ■?.■•-'■■:-...'-;.■ -. ;■- ̂ :̂ y-̂ '»•:■ V̂flrtv̂ 'l̂ ^̂ >s■8-̂ ■,5y7̂ ĵ>̂ â--'l

V

procedure is vastly more powerful and flexible than
anything we have discussed up to now.

To begin, let's define the procedures TEN and
DOUBLE.

TO TEN
0P7 + 3

END

TO DOUBLE :NUMBER
0P2*:NUMBER

END

/^^*\
Now, typing TEN to Logo gets the response RESULT:
10. TEN can be used in computations.

Type

PRINT DOUBLE TEN

The OUTPUT command (or its abbreviation, OP) tells
these procedures to stop and "output an object" or "re
turn a value'' or "produce a result.'' To see what all this
means, try the following experiments by typing these
lines to Logo:

10
TEN
DOUBLE 5
5* DOUBLE!

When you typed the number 10, you were handing
Logo the object 10 directly. The object 10 has the value
10 or results in a 10 lying around. Logo announces that
with the message, RESULT: 10.

T e r r a p i n L o g o T u t o r i a l W - 3 7

Words and Lists

When you typed the procedure name TEN, it com
puted a value and then it handed the value (the object
10) to Logo. Similarly, when you typed the procedure
name DOUBLE, you handed it the object 5 to work
with. It computed the value 10, and handed that back
as the result.

In both of these cases, you may think of the procedures
as having replaced themselves by the value they out
put. That makes the last line especially clear. If
DOUBLE 1 replaces itself with the value 2, then the
line becomes 5*2.

~ i

6$ We often use the word "object" to refer
equally to words (including such things as
numbers and letters) and lists (including /^mK)
simple sentences or complex data structures).

We do this because Logo can easily combine
words and lists to make other words and lists,
break words and lists into pieces, or pass
words and lists back and forth between pro
cedures as if they were concrete, solid ob
jects.

When we need to specify what kind of object,
we refer to "numbers" or "words" or "lists,"
but the word "object" refers to them all.

The word "value" sometimes sounds more
natural than "object" when we are referring
to the result of some computation, but there is
really no important difference between the
w o r d s . ,

W - 3 8 T e r r a p i n L o g o T u t o r i a l

Words and Lists

Here is a more useful application of the same sorts of
procedures.

/ • ^

TOPI TO CIRCUMF :DIAMETER
OUTPUT 3.14159 OP PI*: DIAMETER

END END

Having a procedure that figures out the circumference
of a circle, given its diameter, has a practical applica
tion in Logo. Among other jobs, it can be used in a
graphics procedure to draw circles of a given size.

All circles in Logo are drawn by drawing short line
segments, turning a little, and repeating the process
until the circle closes. The smaller the line segments,
of course, the smaller the circle.

But how do we determine the length of the segments if
we want a circle of a very specific size? If the circle is
composed of twenty segments, then each one is one-
twentieth of the circumference. If it is drawn with
twelve segments, then each is one-twelfth of the cir
cumference.

Clearly, then, to draw a circle of a specific diameter,
we must first know the circumference. Then we can
divide it into equal parts, and repeatedly draw one
of these parts and turn the appropriate amount.

TO CIRCLE :DIAMETER
ARC 20 (CIRCUMF :DIAMETER)/ 20

END

TOARC:SEGMENTS:CHORD
REPEAT SEGMENTS [FD :CH0RD RT 18]

END

T e r r a p i n L o g o T u t o r i a l W - 3 9

Words and Lists

■""""*\

Try

CIRCLE 40 RT 180 CIRCLE 40

The following definition of ARC gives a
slightly more symmetrical placement of the
circles on a vertical line. Figure out why.

TO ARC SEGMENTS :CH0RD
FD :CH0RD/2
RT18
REPEAT SEGMENTS -1 [FD :CH0RD RT 18]
FD :CH0RD/2

END

It is useful to have a definition of CIRCLE that /""*^
curves to the left as well as this one that turns
to the right. You can also define half- and
quarter-circles using the same ARC proce
dure.

The objects these procedures manipulated were all
words ~ in fact, only numbers. Now back to lists.
Define these two procedures.

TO PEOPLE
OUTPUT [SANDY CHRIS [THE TURTLE] DANA LEE

PAT DALE]
END

TO ACTIONS
OUTPUT [LOVES [DREAMS ABOUT] KISSED

H A T E S [C A N ' T S T A N D] L I K E S] ^
END

w " 4 0 T e r r a p i n L o g o T u t o r i a l

Words and Lists

G$

We have chosen the names PEOPLE and
ACTIONS as good descriptions of the nature
of the procedures. You will be using these
procedures often, so you might like to choose
names that are shorter or easier to type, like
PPL and ACTS, or NOUNS and VERBS, or
just N and V.

As you develop more complex programs, it
will become especially important that you
choose procedure titles and variable names
that help you remember what their purpose
is. The best policy is to choose names that are
easy in two ways: easy to type and easy to re
member.

These procedures contain instruction lines that are too
long to fit neatly on the screen, but you should con
tinue typing normally, without pressing <RETURN>
when you get to the edge of the screen. Logo will place
a! at the end of the screen to indicate that your line
continues past there, but will continue to show the rest
of your typing on the next line.

Type these procedures accurately, being particularly
careful about getting the left and right brackets in the
correct places. (Notice that they are the square brack
ets, and not parentheses! The brackets are typed as
SHIFT-N and SHIFT-M on the Apple II and Apple 11+.)

Once you are in the editor, you can type any
r^ ^jfli^S^ number of procedures before pressing

CTRL-C to define them. (But remember you
must type END after each procedure before

T e r r a p i n L o g o T u t o r i a l W - 4 1

Words and Lists
/?.-7. '*? ,f: ■ ■'•■< *~

starting the next one.) In this case it makes lit
tle difference whether you define the proce
dures one by one or both together. Sometimes,
though, you will find it very convenient
to be able to look at one procedure while you
are defining another.

^

The only behavior of these procedures is to output a
list. PEOPLE outputs a list of seven names. Six of those
names are words, but one of them, THE TURTLE, is it
self a list of two words.

ACTIONS also outputs a list. That list contains only six
elements, four of which are single words and two of
which are lists of two words each.

To demonstrate that these procedures output objects,
type PEOPLE to Logo. Then type PRINT ACTIONS.
Your screen should look something like this.

PEOPLE
RESULT: [SANDY CHRIS [THE TURTLE] DANA L
EE PAT DALE]
PRINT ACTIONS
LOVES [DREAMS ABOUT] KISSED HATES [CAN'T
STAND] LIKES

When Logo cannot fit everything onto one line, it
breaks the line where it must, and continues on the
next line. (Note that a! does not appear at the end of the
first line in immediate mode, unlike in edit mode.)

~ i

^

W - 4 2 T e r r a p i n L o g o T u t o r i a l

r^

Making Ome PF&cedmre's Omtpmt Into Am&ther
Pmcedwre's Mput: OUTPUT'(OP), FEEST,
BUTFIEST(BF), LAST9 BUTLAST (BL),
SENTENCE (SE), WORD

Clear the text screen.

What object does FIRST PEOPLE output? (Type FIRST
PEOPLE to check if you want to.)

Logo also has a procedure BUTFIRST which outputs
all but the first element of its input. Type BUTFIRST
PEOPLE to see the object it outputs. And what is the
FIRST of that object? Type FIRST BUTFIRST PEOPLE
to see.

What object would BUTFIRST output if its input is the
object created by BUTFIRST PEOPLE. (In other words,
what object is created by BF PEOPLE, and what is the
BF of that?) Type BF BF PEOPLE or BUTFIRST
BUTFIRST PEOPLE to check.

And what is the FIRST of that object? Type FIRST BF
BF PEOPLE to see.

Remember to clear the text screen whenever it will
help you see what you are doing.

Here are some more experiments to do with PEOPLE
and ACTIONS. They are all to get you familiar with
some new primitives and passing objects between
them. You may type abbreviated forms such as PR, SE,
and BF, or fully spelled out forms, whichever you pre-

s~\ fer, but don't just sight-read these experiments. Do
each of them and compare the results you get to the
comments written before or after the experiments.

T e r r a p i n L o g o T u t o r i a l W - 4 3

Words and Lists

Logo can copy an object from either end of a list,

FIRST ACTIONS
LAST ACTIONS

and from either end of a word

PR FIRST "CAT
PR LAST "CAT

/ " ^ ^ ^ K

When FIRST or LAST receive a word as in
put, they output the corresponding (first or
last) letter of the word. When they receive a
list as input, they output the corresponding
element of the list.

BUTFIRST (BF) and BUTLAST (BL) output
all but what FIRST and LAST output. It is im
portant to remember (and a common source
of bugs for those who forget) that the BF or BL
of a list is always a list. Thus, the BUTFIRST
of [FD 30] is not 30, but [30].

FIRST of ACTIONS produced an object, a result. Logo
can manipulate that object, taking its FIRST or LAST
element, just as it can manipulate any other object.

PR FIRST FIRST ACTIONS
PR LAST FIRST ACTIONS

Since FIRST ACTIONS is LOVES, its FIRST is L and its
LAST is S.

w " 4 4 T e r r a p i n L o g o T u t o r i a l

Words and Lists

s * ^ ^ \

Type:

PR SENTENCE PEOPLE ACTIONS
PR SE FIRST PEOPLE FIRST ACTIONS

SENTENCE (abbreviated SE) glues any two objects to
gether into a sentence. The sentence of the lists output
by PEOPLE and ACTIONS is a long one. The sentence
of the first elements of those lists is SANDY LOVES.

Type:

PR (SE LAST PEOPLE LAST ACTIONS FIRST PEOPLE)

By surrounding SENTENCE and its inputs with par
entheses, you can force SENTENCE to take more (or
fewer) than two inputs. This is often very important in
interactive language programs.

The next series of experiments is particularly impor
tant as it forms the basis for the vast majority of the
procedures you will use most in manipulating words
and lists. It is, for example, at the heart of the
MEMBER? procedure that you defined at the very be
ginning of this chapter. Clear the text screen. Do each
experiment and note its behavior.

PEOPLE
BF PEOPLE or BUTFIRST PEOPLE
BFBF PEOPLE
BFBFBF PEOPLE

Be certain you see the pattern in the results of the pre
vious four experiments before going on. Now predict
the results of each of these experiments and then check
your prediction by running the experiment.

T e r r a p i n L o g o T u t o r i a l W - 4 5

Words and Lists
I

The primitives that Logo provides give immediate ac
cess to the first or last element of a list, or to the first or
last character of a word, but what about the second,
third, or other elements?

^

FIRST PEOPLE
FIRST BF PEOPLE
FIRST BFBF PEOPLE
FIRST BFBFBF PEOPLE

Similar patterns hold for LAST and BUTLAST (BL).

PR BUTLAST ACTIONS or PR BL ACTIONS
PR LAST BL ACTIONS

Finally, you can combine a whole bunch of these oper
ations into one command.

PR (SE FIRST BF BF PEOPLE LAST BL ACTIONS [ME])

SENTENCE glues parts together to make a sentence. ^
We added [ME] to try to add some interest.)

Logo also provides the primitive WORD, which glues
parts together to make a word. Try this:

PR WORD "CBF "SANDY

Here are some more complicated expressions using
WORD.

PR WORD BL FIRST PEOPLE "WICH
PR WORD BL FIRST ACTIONS LAST BL PEOPLE

Subprocedures for Cleaner Programming

W - 4 6 T e r r a p i n L o g o T u t o r i a l

Words and Lists

/^^\

/^^\

/̂ ^̂ *\

One set of procedures to output the SECOND, THIRD,
FOURTH, and FIFTH elements of an object is based on
the experiments you tried above. Type these in, and try
them out with the projects suggested.

TO SECOND :0BJ
OP FIRST BF:0BJ

END

TO THIRD :0BJ
OP FIRST BFBF:0BJ

END

TO FOURTH :0BJ
OP FIRST BFBFBF:OBJ

END

TO FIFTH: OB J
OP FIRST BFBFBFBF:OBJ

END

PR (SE FOURTH PEOPLE THIRD ACTIONS THIRD PEOPLE)
PR (SE SECOND PEOPLE FIFTH ACTIONS THIRD PEOPLE)

The new procedures allow you to write equivalent
commands in different ways. For example, the two fol
lowing commands have the exactly the same effect:

PR (SE FOURTH PEOPLE SECOND ACTIONS FIFTH PEOPLE)
PR (SE FIRST BF BF BF PEOPLE FIRST BF ACTIONS FIRST BF

BF BF BF PEOPLE)

. . . but there are important differences. Not only is the
first shorter to type, but it is also much more under
standable. Writing understandable programs is a mark
of good programming.

T e r r a p i n L o g o T u t o r i a l W - 4 7

Words and Lists

TO NTH :N :OBJECT
IF :N = 1 OUTPUT FIRST :0BJECT

END

~)

A Generalization Using Recursion: ITEM

Although these new procedures vastly simplify both
the look and the typing of some list manipulations,
they have some drawbacks. The most obvious is that in
order to get PAT out of the PEOPLE list, we'd need a
procedure SIXTH, and even if we wrote that, there
would always be some list that was even longer.

What we really need is one single procedure that can
retrieve any member of a list. (If you have version 2.0,
you can use the primitive ITEM to do this. Don't skip
ahead, though.)

As a first step toward figuring out how to write it, let us
carefully describe its behavior in English. Let us call ^"s
this procedure NTH (as in fourTH, sixTH, sevenTH). '
We need to tell NTH two things: what number element
to find, and what object to choose it from. Perhaps the
whole title line will look something like this:

T0NTH:N:0BJECT

If N is 1, the procedure should just output the first ele
ment of the object. That instruction would look like
this in Logo.

IF :N = 1 OUTPUT FIRST :0BJECT

and the whole procedure, so far, would look like this:

W - 4 8 T e r r a p i n L o g o T u t o r i a l

Words and Lists
/™^*\

Create this procedure. At this stage you can use the
procedure to get the first (but only the first) element of
an object. Tty typing PR NTH 1 PEOPLE, and make
sure it prints SANDY.

That is the simplest situation. To come up with a good
way of describing the other situations, let us examine
them one by one. If N is 2 then we want NTH to output
the first element of the next shorter object (the
BUTFIRST of the object). The first element of an object
is something NTH knows how to output, so it can do
the job itself. In Logo, that might be translated this way:

IF :N = 2 OUTPUT NTH 1 BF :0BJECT

^^ It will turn out that there is a neater way of doing
things, but, for now, add that line to your procedure,
too, and check to see that PR NTH 2 PEOPLE causes
Logo to print CHRIS. You might also check PR NTH 1
ACTIONS and PR NTH 2 ACTIONS.

What if N is 3 ? NTH already knows how to find the
second element of an object. To find the third element,
we could simply find the second element in the BUT-
FIRST of the object. In Logo, this is translated:

IF :N = 3 OUTPUT NTH 2 BF :OBJECT

If we continued in this way, we might add a bunch of
instructions that look like this:

IF :N = 4 OUTPUT NTH 3 BF :OBJECT
IF :N = 5 OUTPUT NTH 4 BF :0BJECT

^ I F : N = 6 O U T P U T N T H 5 B F : 0 B J E C T
IF :N = 7 OUTPUT NTH 6 BF :0BJECT

T e r r a p i n L o g o T u t o r i a l W - 4 9

Words and Lists
\Zl

/ ^ ^ ^ f c k

But this does not solve the original problem. N might
still be some number larger than we account for. For
tunately, there is a generalization we can make. In all
of the cases where N is not 1, the procedure figures out
what to do by looking for element N-l in the BUTFIRST
of the object.

We will repeat the logic:

TO output the NTH element of an object we need to
know N and the OBJECT.

TO NTH :N :0BJECT

If N = 1, we want to OUTPUT the FIRST of the OBJECT.

I F : N = 1 O P F I R S T : 0 B J E C T ~)

In every other case, we want to OUTPUT the N-l
element (found by using NTH with an input of N-l) of
the BUTFIRST of the OBJECT.

OP NTH :N-1 BF .OBJECT

Thus, the procedure might look like this (with
OUTPUT abbreviated as OP):

T0NTH:N:0BJECT
IF:N = 1 0PFIRST:0BJECT
0PNTH:N-1BF:0BJECT

END

Edit NTH to make your copy look like this new version
and try it out with values of N ranging from 1 to 7 and ^.
the PEOPLE list, or with values ranging from 1 to 6 and)
the ACTIONS list. It even works on words.

W - 5 0 T e r r a p i n L o g o T u t o r i a l

/*^*\
Words and Lists

Remember that ITEM, which does the same thing as
^ NTH, is provided as a primitive in Terrapin Logo ver

sion 2.0.

L§

/ - " ^ ^ N

10. Write a procedure that takes a number from 1 to
26 as input and outputs the corresponding letter of the
alphabet.

11. Using the procedure you wrote in project 10, write
a new procedure that takes a list containing a number
from 1 to 26 and again outputs the corresponding letter
of the alphabet.

12. Using the procedure you wrote in project 11, write
a new procedure that takes a list of exactly two num
bers ranging from 1 to 26 and outputs a two-letter word
with the corresponding letters of the alphabet.

13. Using the procedure you wrote in project 12, write
a new procedure that takes a list of exactly three num
bers ranging from 1 to 26 and outputs a three-letter
word with the corresponding letters of the alphabet.

14. Using the reasoning suggested in this chapter,
write a new procedure that takes an arbitrary length
list of numbers ranging from 1 to 26 and outputs the
word composed of the corresponding letters of the
alphabet.

15. Using PEOPLE, ACTIONS, NTH (or ITEM), and
Logo primitives PR, SE, and RANDOM, write a proce
dure that prints random sentences. (Write subproce
dures that do parts of the job and then combine them.)

Terrapin Logo Tutorial W-51

Words and Lists

Some Important Primitives Used in this
Chapter

The following summary gives a brief synopsis
of some commonly used primitives. It is by
no means an exhaustive listing. If you don't
find what you want, consult the Logo
Command Glossary.

y ^ ^ ^ ^ ^ K

The primitives that manipulate Logo objects can be
classified into four categories:

1) Those that assemble objects
2) Those that decompose objects
3) Those that determine the nature of objects (i.e. Pre- ^"^

dicates)
4) Those that pass objects back and forth among pro

cedures, to and from variable names, and between
the user and the procedure.

Primitives that assemble Logo objects:

WORD—Creates a word (a set of contiguous charac
ters) from two inputs. Inputs may be words, charac
ters, or procedures that output words/characters.

SENTENCE (SE) — Creates a list from two inputs.
Inputs may be words, lists, or procedures which
output words/lists. Unlike LIST, SENTENCE returns
a list containing no sub-lists.

LIST — Like SENTENCE, creates a list from two
inputs. If either input is a list, it will appear as a ^""^
sub-list in the newly created list.

W - 5 2 T e r r a p i n L o g o T u t o r i a l

Words and Lists
jr- N ESaHBW*

/ ^ ^ \

^*m^^\

FPUT—Creates a list from two inputs, the second of
which must be a list. The new list created by FPUT
consists of the first input (a word or list) followed by
the elements of the second input.

LPUT — Same as FPUT, except that LPUT creates a
list consisting of the elements of the second input
followed by the first input.

Primitives that decompose Logo objects:

FIRST—Outputs the first element of its input. If the
input is a word, FIRST outputs a character; if the
input is a list, FIRST outputs the first element of the
list.

BUTFIRST (BF) — Takes one input and outputs all
but the first element.

LAST, BUTLAST (BL) — Corresponding operations
for last element of input.

COUNT — Takes a single input, a word or a list.
Outputs the number of characters in the word, or the
number of elements in the list. (Remember that Logo
treats a sub-list as a single element of the larger list.)

ITEM — Takes two inputs; the first input must be a
number, and the second must be a word or list. Out
puts the nth element of the second input.

Note that COUNT and ITEM are not primitives in
Logo versions prior to version 2.0.

T e r r a p i n L o g o T u t o r i a l W - 5 3

Words and Lists

Primitives that determine the nature of an object:

WORD? — Outputs "TRUE if the input is a word;
otherwise, outputs "FALSE.

LIST? — Outputs "TRUE if the input is a list; other
wise, outputs "FALSE.

NUMBER? — Outputs "TRUE if the input is a
number; otherwise, outputs "FALSE.

EMPTY?—Outputs "TRUE if the input is the empty
list or the empty word ([] or "); otherwise, outputs
"FALSE.

MEMBER? — Takes two inputs. Outputs "TRUE if ^
the first input is an element of the second input;
otherwise, outputs "FALSE.

Note that MEMBER? and EMPTY? are not primi
tives in Logo versions prior to version 2.0.

Primitive that passes an object from one procedure to
another:

OUTPUT (OP) — Causes a procedure to STOP and
output an object to another procedure or primitive.

Primitives that pass objects to and from variable
names:

MAKE — Takes two inputs. The first input becomes
the name associated with the value of the second in
p u t . ^ - N

W - 5 4 T e r r a p i n L o g o T u t o r i a l

Words and Lists

=^

THING — Takes a variable name as an input. Out
puts the value associated with the name. A colon (:)
prefixed directly to a name is the abbreviation for
THING. Thus, THING "A is the same as :A.

Primitives that pass objects to and from the user:

REQUEST (RQ)—Waits for the user to type an input
line followed by <RETURN>. Outputs the input
line as a list to the calling procedure.

READCHARACTER (RC) — Takes a character typed
at the key board and outputs it as a word to the call
ing procedure. (Remember that RC does not wait for
you to type <RETURN>.)

RC? — Outputs "TRUE if a keyboard character is
pending; otherwise, outputs "FALSE.

PRINT (PR) — Prints its input on the screen (or on
the printer, if specified) followed by <RETURN>.
Input may be a word or a list. Notice that PRINT
strips away all brackets and single-quotes.

PRINTl — Prints its input on the screen without
<RETURN>. Otherwise, exactly like PRINT.

Also, note that certain Logo primitives can take extra
inputs if the entire command is enclosed in paren
theses, e.g. (PRINT :LENGTH :HEIGHT :WIDTH).
The primitives are LIST, WORD, SENTENCE, PRINT,
and PRINTl. In this situation, LIST and SENTENCE
may also take one input instead of two.

/^^*\

Terrapin Logo Tutorial W-55

Words and Lists

When using parentheses to indicate extra inputs, be
sure to put a space before the closing parenthesis.
Otherwise, Logo may assume that the parenthesis is
part of the last input and complain that

(primitive) NEEDS MORE INPUTS

Definitions of Words and Lists
CHAR
We have not yet carefully defined Logo's two types of
objects, words and lists. A word, the simplest data ob
ject, consists of any continuous string of characters.
You've seen several already; here are some other
examples:

90
3.1416
HI
ANTIDISESTABLISHMENTARIANISM
HENRY.THE.8TH
XYZ
R2D2

As you can see, numbers are Logo words, long and
short English words are Logo words, and even arbitrar
ily spelled symbols can be Logo words. Experience has
already taught you that when you type several Logo
words, spaces separate them instead of becoming part
of them.

If you need words that contain odd characters like
<SPACE> in them, you can surround them with
single-quotes. In the experiment that follows, type
carefully, remembering to put in all the double-quote

W _ 5 6 T e r r a p i n L o g o T u t o r i a l

Words and Lists
/^^^\

characters and single-quote characters just as they are
shown and to type a space between the first A and the
B. Clear the text screen and type

" ' A B C
PRINT "'ABC
[ABC]
PRINT [ABC]
LAST "'ABC and LAST [ABC]

Your screen should look like this:

"'A BC
RESULT: 'A BC
PRINT "'ABC
ABC
[A BC]
RESULT: [A BC]
PRINT [ABC]
ABC
LAST "'ABC
RESULT: C
LAST [ABC]
RESULT: BC

Notice that PRINT and other primitives (except OUT
PUT) strip away brackets and single-quotes.

The following procedure ODD WORD creates a word of
three other words, two of which have spaces in them.
Define the procedure, typing carefully. Be sure to type
a space before the second parenthesis. (See the preced
ing glossary if you're not sure why.)

r^P^K,

T e r r a p i n L o g o T u t o r i a l W - 5 7

Words and Lists

/*̂ ^̂ \

TO ODDWORD
OP (WORD "'A BA' "'BYB' "OY)

END

Now try these experiments with the odd word that
ODDWORD outputs.

PR ODDWORD
PR NTH 1 ODDWORD
PR NTH 2 ODDWORD
PR NTH 3 ODDWORD
PR NTH 10 ODDWORD
PR LAST ODDWORD
PR WORD NTH 2 ODDWORD ODDWORD
PR WORD "^spaceXspaceXspace^ ODDWORD

Even though the word that ODDWORD outputs con
tains spaces, it is a word. Even though it looks like a list
when printed, it behaves like a word. The LAST of it is
the letter Y, not the word BOY.

A space can be typed, and the single-quote character
allows you to insert that space inside a word, but there
are some characters that cannot be typed into a proce
dure at all. An example is the <CTRL> G character. If
you were to try typing

PR'"<CTRL>G'

to Logo, it would say STOPPED! before you reached
the second single-quote. But there is a way to include
even strange characters like that in a word. The Logo
primitive CHAR outputs the character which corre
sponds to the ASCII code it is given. ^—n

W - 5 8 T e r r a p i n L o g o T u t o r i a l

Words and Lists

n

The ASCII codes for <CTRL> A through <CTRL> Z
are 1 through 26. The codes for capital A through capi
tal Z are 65 through 90, or 64 larger. Thus, you will get
the same effect if you type

PR CHAR 65 or PR "A

Empty words — words that contain no characters at
all, not even a space — also exist. When typing a com
mand to Logo, one way to indicate you are referring to
the empty word is by following a " with a <SPACE> or
<RETURN>. (The <SPACE> separates the word from
what follows, and is not part of the word.)

See, for example, the procedure EMPTY?, which tests
to see if its input OBJECT is either the empty word or
the empty list.

A list is an ordered collection of Logo objects. Its ele
ments can be words or other lists. Here are some exam
ples of lists:

[COLORS [BLUE GREEN YELLOW RED] SIZES [LARGE
SMALL]]

[555-2561617-4436 918-9961]
[[FD 70] [RT 120] [FD 70] [RT 120] [FD 70] [RT 120]]
[]

The matched left and right square-brackets show the
scope of a list. The first list contains four elements, the
second and fourth of which are lists themselves and
thus are grouped together with the square-brackets.

z » \

T e r r a p i n L o g o T u t o r i a l W - 5 9

Words and Lists

~ \

^

The second list contains three elements, each a word
denoting a telephone number. The third list contains
six sublists, each of which contains a Logo command.
The fourth list is empty; it contains no elements at all.

Spaces separate elements of the list. The number of
spaces signifies nothing, and in fact, more than one
space between two elements will be ignored by Logo.

Some Details of Programming in Logo:
Variables, Passing Objects, Logo's Way of
Understanding Commands, and Logo's
Messages When It Doesn't Understand

Type this operation to Logo:

WORD "CAT'S

As has happened frequently in this chapter, we have
suggested you type somehing to Logo that caused it to
respond with the word "RESULT: " followed by the
result of the operation. Logo includes the message
RESULT: to remind you that it has computed a result,
but you have not told it what to do with the result.
Compare the effect of this command:

PR WORD "CAT "S

Both times, the word CATS appeared, but the second
time you told Logo what to do with the result (to print
it) and so that is what it did.

You can predict the result of these operations:

W O R D " H O R S E " S ^
WORD "DOG "S

W - 6 0 T e r r a p i n L o g o T u t o r i a l

Words and Lists

In each case, you typed

WORD somethingorother "S

suggesting a procedure that might look a bit like this:

TO PLURAL :S0METHING0R0THER
WORD :S0METHING0R0THER "S

END

Of course, since names of procedures and variables are
arbitrary, you could choose names that are easier to
type. NOUN, or IT might be good choices for the vari
able name.

/^^^\ TO PLURAL:NOUN
W0RD:N0UN"S

END

Why did we switch from quote CAT and quote DOG
and quote HORSE to colon NOUN? When you typed

WORD "CAT "S

CAT was the word you wanted to attach the S to. In the
procedure, the word NOUN only stands for the word
you want to attach the S to, but it is not the real word.
You still want the procedure to work on words like
CAT, DOG, and HORSE.

Remember the tiresome joke?

Dale: Bet you've never heard of the word
"antidisestablishmentarianism!"

Dana: Of course I have.
Dale: Pooh! I bet you can't even spell it.

T e r r a p i n L o g o T u t o r i a l W - 6 1

Words and Lists
I —

Dana: Of course I can.
Dale: Go ahead. Let's see if you can spell it.
Dana: A, n, t, i, d, i. . .
Dale: Hah! Wrong already! "It" is spelled

;" i t ."

Dale is playing with the confusion between
what a word is and what it stands for. When
you speak, you change your tone of voice
when you need to make that clear. Consider,
for example, how you might say the words

"Please say your name"

to Dale if you really wanted Dale to answer
"your name" instead of "Dale"? When you
write, you use quotation marks to help make ^^\
your meaning clear. And when you program
in Logo, the quotation marks again mean
"take this word literally" as they do in writ
ten English.

However, Logo's rule is different from the
rule in English: in Logo no quotation mark is
placed after the quoted word and that one
quotation mark applies to only one word.
When you need to indicate that more than
one word is to be taken literally, you must
either separately quote each word, this way

"YOUR "NAME

or enclose all of the words in square brackets,
this way

[Y O U R N A M E]]

W - 6 2 T e r r a p i n L o g o T u t o r i a l

Words and Lists

Now type in the procedure:

TO PLURAL :N0UN
W0RD:N0UN"S

END

To run it, type PLURAL followed by a quoted word like
this:

PLURAL "CAT
PLURAL"HORSE

Your screen will look like this:

PLURAL "CAT
YOU DON'T SAY WHAT TO DO WITH CATS, IN LINE

WORD :N0UN "S
ATLEVEL 1 OFPLURAL

Inside the procedure PLURAL, Logo has created an ob
ject and does not know what to do with that object. It is
telling you what problem it was having and exactly
where it encountered the problem.

Logo tells which of your procedures confused it (in
this case, only one of your procedures, PLURAL, was
involved, but there might have been more).

It tells the line in which it got stuck. And it tells the
"level" at which it got stuck — how many procedures
it was already trying to execute when the error
occurred.

T e r r a p i n L o g o T u t o r i a l W - 6 3

Words and Lists

To see the meaning of level, create another procedure
that runs PLURAL.

TOTRYLEV
PLURAL "CAT

END

Try it.

TRYLEV
YOU DON'T SAY WHAT TO DO WITH CATS, IN LINE

W0RD:N0UN"S
AT LEVEL 2 OF PLURAL

Note that the level is now 2. TRYLEV is the first level,
the command you typed to the "top level" of Logo.
Since PLURAL is "within" TRYLEV, its level is 2.
Level can be useful information when debugging
complex programs.

Before you can tell Logo what to do with the object it
creates inside PLURAL, you have to decide that for
yourself. You know how to tell Logo to PRINT the re
sult immediately, but perhaps you want to do some
thing more complicated with the plural word before
printing it.

Suppose, for example, you want to create a procedure
that brags about your pet like this:

I LIKEsome-pet-or-otherS.
some-pet-or-otherS ARE GREAT
BUT MY some-pet-or-other IS THE BEST!

/ « ^ ^ ^ ^ K

W - 6 4 T e r r a p i n L o g o T u t o r i a l

Words and Lists
ijz:

y ^ ^ ^

/^^\

In the second sentence, we want the plural to be tucked
into the sentence before it is printed, and in the first
sentence we need to do two things before printing —
attach a period to the plural and then stick the whole
thing at the end of the sentence.

Since we want to use the object that PLURAL creates in
different ways, it would be nice if PLURAL would
hand the object back to us to manipulate further as we
wish. This is accomplished by telling it to OUTPUT
the object.

Edit PLURAL to insert the word OUTPUT (or its ab
breviation OP) in the proper place. The procedure will
now look like this:

TO PLURAL :N0UN
0UTPUTW0RD:N0UN"S
PRINT [DONE]

END

Now run it again as you did before.

PLURAL "CAT
PLURAL"HORSE

This time, your screen should say:

PLURAL "CAT
RESULT: CATS
PLURAL"HORSE
RESULT: HORSES

That is precisely what we want. PLURAL has com
puted the result, and we are still free to decide what to
do with it.

T e r r a p i n L o g o T u t o r i a l W - 6 5

Words and Lists
r

But what became of the DONE that we told PLURAL to
print? OUTPUT tells a procedure not only to return a
value, but to stop immediately. If it is important that
PLURAL announce when it is done, it must print
DONE before it is done. (It can't do anything after it is
done!)

However, if PLURAL is to be used inside another pro
cedure, perhaps one that brags about pets, PLURAL
probably should not print anything anyway. It should
do its job quietly, and let the superprocedure that uses
it decide what to print and when.

Edit PLURAL again to remove the useless line PRINT
[DONE].

Try to predict what each of these commands will do, J
and then type them to see how each works:

PR SE [I LIKE] PLURAL "CAT
PR WORD "TOM PLURAL "CAT
PR WORD PLURAL "CAT".
PR SE [I LIKE] WORD PLURAL "CAT ".

W - 6 6 T e r r a p i n L o g o T u t o r i a l

Words and Lists
/ • " ^ ^N

How Logo Interprets

It is worth spending a moment to understand how
Logo interprets a command as complex as the last one.

PR SE [I LIKE] WORD PLURAL "CAT ".

nput2

WORD inputl

P L U R A L i n p u t

"CAT

input2

Logo reads from left to right, but as you will see by fol
lowing the diagram above and the discussion below,
PLURAL is the first operation to be executed.

First Logo sees the word PR. That means that it will
have to print whatever follows. So before executing
PR, Logo must read further to see what follows. PR
must wait.

/ - • • n

Instead of finding an object, Logo encounters another
operation, SE. Furthermore, this primitive requires
two inputs of its own, so again Logo must read on to
find them. PR waits for SE and SE waits for its inputs.

Terrapin Logo Tutorial W-67

Words and Lists

Logo finds the object [I LIKE] as a first input to SE. But
SE needs another, so Logo reads further.

Next it finds WORD. Again, this is not an object but an
operation. As before, this primitive requires two in
puts, so Logo reads still further.

The next thing it finds is, again, not an object but
another operation, PLURAL. PLURAL requires one
input, so Logo must still look further.

This time Logo finds an object, "CAT — and since
PLURAL needs only the one input, it can now exe
cute. It outputs CATS which becomes the first input to
WORD. Still, WORD requires a second input which
Logo has not yet seen. So, now — after executing
PLURAL "CAT—Logo continues to read through the
original line and finds the object". at the end of it.

Logo has now found two objects — CATS and . — to
use as inputs to WORD. WORD can now execute, out-
putting CATS., which becomes the second input to
SE. SE can now execute, outputting [I LIKE CATS.]
which becomes the input to PR. PR can now execute,
printing (not outputting!)

I LIKE CATS.

This left-to-right reading but (seemingly) right-to-left
execution can be confusing sometimes. Both of the fol
lowing command lines will cause Logo to complain.
Try them out to see when and where the complaint oc
curs, and then use an analysis like the one given above
to understand what Logo was doing when it had to
stop.

^

^

W - 6 8 T e r r a p i n L o g o T u t o r i a l

/^*^\
V

Words and Lists

PR SE [I LIKE] WORD PLURAL [CAT] ".
PR SE [I LIKE] WORD PLURAL "CAT [.]

Sometimes the complexity of a line makes it difficult
to understand even by the person who first wrote it.
Before reading on, try to predict what the following
Logo command will do. Then type it in to try it, and
read on.

PR SE WORD LAST PLURAL "CAT "CAT "CAT

When you write complex Logo commands — espe
cially if you are writing them for other people to
understand, but often even for yourself— it can be a
good idea to use parentheses to help group the parts of
the command. Logo will interpret the command ac
cording to its rules equally easily with or without the
parentheses, but people find the added punctuation
helpful.

You should decide for yourself how much parenthesiz
ing to do. Sometimes, using the maximum is best. At
times, the maximum looks too cluttered, and just a few
are better. The choice is entirely a matter of taste. For
example, that last command might be parenthesized in
the following ways. Which way makes it visually
clearest to you what the command does?

PR (SE (WORD (LAST(PLURAL"CAT))"CAT)"CAT)
PR SE (WORD LAST (PLURAL "CAT)"CAT)"CAT
PR SE (WORD (LAST PLURAL "CAT) "CAT) "CAT

r .

T e r r a p i n L o g o T u t o r i a l W - 6 9

Words and Lists

~ >

/"•^^ fck .

Be sure to type a space between "CAT and)
— otherwise, Logo will read the parenthesis
as part of the word and will complain that
the primitive needs more inputs, i.e. Logo
can't find a matching right parenthesis.

UsMg L@g@ Predi€(mtes (______ Cremtimg New
OmeSo LEST?9 WOMB?, MEMBER?, ______ the
StFM€tare &fm TMEN9 mmdELSE

All along, we've been using IF without any explana
tion of its structure. The IF statement has three parts:

1) The IF itself

2) A condition which may be either TRUE or
FALSE. (In this case, the condition is LIST?
:NOUN which tells whether it is TRUE or
FALSE that NOUN is a list.) The condition
may include modifiers such as NOT, ALLOF,
and ANYOF, either individually or in combi
nation.

3) The THEN clause: an action to perform if
the condition is TRUE.

An IF statement can also have an additional two parts
when desired.

1) The word ELSE and

2) An action to perform if the condition is
F A L S E ^

W - 7 0 T e r r a p i n L o g o T u t o r i a l

/ ™ ^ \

Words and Lists

Finally, as mentioned earlier, the word THEN can be
used optionally between the condition and the action-
if-true.

Thus, an IF statement can take the following four
forms.

IF condition action-if-true
IF condition THEN action-if-true
IF condition action-if-true ELSE action-if-false
IF condition THEN action-if-true ELSE action-if-false

The condition always contains a "predicate," a Logo
primitive or user procedure that answers a True-False
question by outputting TRUE or FALSE.

In the case of LIST? :NOUN, the True-False question is
"NOUN is a list! True or false?" If the statement is false,
LIST? outputs FALSE. If the statement is true, LIST?
outputs TRUE.

You will often need to create your own predicates, so it
is important to become familiar with their behavior.
Type these expressions to Logo:

LIST? PEOPLE
LIST? FIRST PEOPLE
LIST? NTH 3 PEOPLE

Each time, Logo should announce a result, showing
that LIST? output a word, either TRUE or FALSE, de
pending on whether the input was a list or not.

T e r r a p i n L o g o T u t o r i a l W - 7 1

Words and Lists

You have used several other predicates. When you
used NUMBER? :CHTR in the EASY procedure for
QUICKDRAW in project 5, it output TRUE or FALSE
depending on the truth of the statement "CHTR is a
number."

In GREET, you used the expression EMPTY?
:PERSON. It worked the same way.

And, in the expression IF :CHTR = "F, the equal sign
also outputs TRUE or FALSE depending on the truth of
the statement that CHTR equals "F. (The =, like the +,
comes between its inputs.)

The RC? primitive (which takes no inputs), the
WORD? primitive (which takes one input), and the
procedure MEMBER? (which takes two inputs) are
also predicates.

When you first defined MEMBER? and EMPTY? we
postponed explaining how they work. You are now
probably ready for that explanation.

Look first at the procedure EMPTY?.

TO EMPTY? :0BJECT
OUTPUT ANYOF :0BJECT = [] :0BJECT = "

END

There are two equal-signs in the procedure. Each one
outputs TRUE or FALSE.

The first one outputs TRUE if OBJECT is the empty list
(and FALSE otherwise). The second outputs TRUE if
OBJECT is the empty word (and FALSE otherwise).

W - 7 2 T e r r a p i n L o g o T u t o r i a l

^

^

/ " ^ " ^ i .

sm^^\

Z*i^fc\

/ ^ ™ ^ ^

Words and Lists

ANYOF takes two (or more) inputs, and it outputs
TRUE if any of them is TRUE.

Finally, the purpose of the command OUTPUT in the
procedure is to tell EMPTY? to output whatever
ANYOF outputs. Thus, EMPTY? outputs TRUE if any
of these conditions is true:

the OBJECT is [], the empty list
the OBJECT is " , the empty word

Otherwise, EMPTY? outputs FALSE.

Now look at the procedure MEMBER?.

TO MEMBER? :ELEMENT :0BJECT
IF EMPTY? :OBJECT OUTPUT "FALSE
IF :ELEMENT = FIRST :0BJECT OUTPUT "TRUE
OUTPUT MEMBER? :ELEMENT BUTFIRST :0BJECT

END

Surely ELEMENT cannot be a member of OBJECT if
OBJECT has no members! So, if OBJECT is empty,
MEMBER? should output FALSE.

IF EMPTY? :OBJECT OUTPUT "FALSE

If ELEMENT is the first member of OBJECT, the proce
dure need check no further. It can already answer
TRUE that ELEMENT is a member of OBJECT.

IF:ELEMENT = FIRST :0BJECT OUTPUT "TRUE

T e r r a p i n L o g o T u t o r i a l W - 7 3

Words and Lists

Now, the recursive step. If there are more elements in
OBJECT (because OBJECT is not empty), but
ELEMENT is not the first element of OBJECT, it may
still be one of the later elements. If it is a member of
BUTFIRST :OBJECT, it is clearly a member of OBJECT.

So, if ELEMENT is not the first element of OBJECT, but
there are more elements, the procedure may answer
the original question —MEMBER? :ELEMENT
:OBJECT — by outputting the answer to a simpler
question — MEMBER? :ELEMENT BUTFIRST
:OBJECT.

OUTPUT MEMBER? :ELEMENT BUTFIRST :0BJECT

^

You've probably noticed that every predicate ^]
has the -? suffix. We will continue to use this
convention throughout the chapter. When
you see a primitive or procedure name end
ing in -?, you'll know that its behavior is to
output TRUE or FALSE.

ects with Predi€&tes

16. Define the predicate, TO VOWEL? :LETTER, that
outputs TRUE if LETTER is a vowel, and FALSE
otherwise.

17. Define the predicate, TO YES?, that requests a
typed line from the user and outputs TRUE if that line
is a reasonable synonym of "yes," FALSE if the line is a
reasonable synonym of "no," and otherwise prints a
message requesting clarification and calls itself recur- /^m\]
sively to try again. Decide on the synonyms you will
accept.

W - 7 4 T e r r a p i n L o g o T u t o r i a l

Words and Lists

Testing out PLURAL reveals a number of bugs. Try the
following inputs:

PLURAL"DOG
PLURAL"TURTLE
PLURAL "FLY
PLURAL "FINCH
PLURAL "FISH
PLURAL "MOUSE
PLURAL "CHILD
PLURAL "FOX
PLURAL [FOX TERRIER]

/—s Two different kinds of bugs can be noted. One is that
^ some of the plurals are not correct. The procedure's

only rule is to tack on an S, and it must be taught more
about English plurals.

The other bug is that it couldn't handle [FOX
TERRIER] at all. In this case, Logo complains that
WORD doesn't like [FOX TERRIER] as input in the
context of OUTPUT WORD :NOUN "S in the proce
dure PLURAL.

Logo, of course, is not biased against cute dogs. It is
merely trying to say that WORD glues pieces of words— not lists — together to make other words.

To solve this problem the procedure doesn't need more
knowledge about English, but rather needs more
knowledge about its inputs. We will show a solution to

^■•n three of the problems and suggest several other problems as projects for you to work on.

T e r r a p i n L o g o T u t o r i a l W - 7 5

Words and Lists
mfm̂ »?̂ }m̂ :mk̂ -̂ rn!̂ m&M̂ wwf-̂ r>-i-:-- -TTiggâ gaT, ■■■v.:»v:.-.*:\i-Krte j>-*fr&jmm!&*x'*#*:J><\.

First, the FOX TERRIERS. If NOUN is a list, PLURAL
should probably do most of its work on the last word of
the list.

It should OUTPUT a SENTENCE composed of all BUT
the LAST word of NOUN, and the PLURAL of the
LAST word of NOUN. The Logo instruction would
look like this:

IF LIST? :N0UN OP SE BL :N0UN PLURAL LAST :N0UN

Edit PLURAL and add that line.

TO PLURAL :N0UN
IF LIST? :N0UN OP SE BL :N0UN PLURAL LAST :N0UN
0UTPUTW0RD:N0UN"S

END

Try
PLURAL [BLUE BIRD]
or
PLURAL [RICKETY LADDER]
in addition to
PLURAL [FOX TERRIER].

Right now, PLURAL "FOX outputs FOXS. To get it to
output FOXES, we might include a simple test to see if
X is the last letter of NOUN. If it is, we should attach ES
rather than S to NOUN.

IF "X = LAST :N0UN OP WORD :N0UN "ES

Where shall we put this new instruction? Certainly not
as the last instruction, because if it came after the line
OUTPUT WORD :NOUN "S, the procedure would

W - 7 6 T e r r a p i n L o g o T u t o r i a l

/^^^\

/ ^ ^ ^ K

Words and Lists

never get to it. In this case, it makes little difference in
PLURAL's behavior whether the new instruction
comes first or second.

Edit PLURAL and define it to look like this:

TO PLURAL:NOUN
IF LIST? :N0UN OP SE BL :N0UN PLURAL LAST :N0UN
IF "X = LAST :N0UN OP WORD :N0UN "ES
0UTPUTW0RD:N0UN"S

END

Now test it out. Does PLURAL give the right plural for
FOX? What about [FOX TERRIER]? And wh t̂ about
[GREY FOX]?

(^ A third problem is teaching the procedure how to
handle the really strange cases, like CHILD, MOUSE,
FOOT, and SHEEP. First, we must make a list of the ex
ceptions.

MAKE "EXCEPTIONUST [CHILD MOUSE FOOT SHEEP OX]

PLURAL must be told something like "If the noun is
one of the exceptions ..."

IF MEMBER? :N0UN :EXCEPTIONLIST...

". . . then output the special plural associated with
that particular noun."

... OUTPUTspecial.plural.something.or.other

^^ Where should that special-plural information reside?
(I t c o u l d b e a n o t h e r p r o c e d u r e :

T e r r a p i n L o g o T u t o r i a l W - 7 7

Words and Lists
i n

TO EXPLU :N0UN
IF
IF
IF
IF
etc.

END

NOUN = "CHILD OP "CHILDREN
NOUN = "SHEEP OP "SHEEP
NOUN = "MOUSE OP "MICE
NOUN = "FOOT OP "FEET

In that case the new addition to PLURAL would be:

IF MEMBER? :N0UN :EXCEPTIONUST OP EXPLU :N0UN

Another approach, in some ways simpler, is to put
each piece of special plural information into a box
whose name is the noun itself. So we could put
CHILDREN into a box named CHILD, and put SHEEP ^
i n t o a b o x n a m e d S H E E P , e t c .)

MAKE "CHILD "CHILDREN
MAKE "SHEEP "SHEEP
MAKE "OX "OXEN

Then IF the NOUN were a member of the
EXCEPTIONLIST, PLURAL should OUTPUT the ob
ject (THING) inside a box associated with the NOUN.
The Logo would look like this:

IF MEMBER? :N0UN :EXCEPTIONLIST OP THING :N0UN

This is strange-looking code, indeed. What can THING
:N0UN mean? If :NOUN is CHILD, then THING
:N0UN is the THING of CHILD, and if :NOUN is
SHEEP, then THING :NOUN is the THING of SHEEP.

W - 7 8 T e r r a p i n L o g o T u t o r i a l

Words and Lists
_ _ _ I

And what is the THING of CHILD? CHILDREN, be
cause earlier you typed MAKE "CHILD "CHILDREN.
So, too, the THING of SHEEP is SHEEP.

Presets with PLURAL
18. It matters where you place the new instruction.
Below, we show PLURAL defined in three different
ways, with the new instruction placed first, second,
and third.

Define PLURAL each way and test it out enough to de
termine which way(s) work. (Why do we not bother
even trying it as the fourth instruction?)

TO PLURAL :N0UN
IF MEMBER? :N0UN :EXCEPTI0NUST OP THING :N0UN
IF LIST? :N0UN OP SE BL :N0UN PLURAL LAST :N0UN
IF "X = LAST :N0UN OP WORD :N0UN "ES
OUTPUT WORD :N0UN"S
END

TO PLURAL :N0UN
IF LIST? :N0UN OP SE BL :N0UN PLURAL LAST :N0UN
IF MEMBER? :NOUN:EXCEPTIONUST OP THING :N0UN
IF"X = LAST :N0UN OP WORD :N0UN "ES
OUTPUT WORD :N0UN"S •
END

TO PLURAL :N0UN
IF LIST? :N0UN OP SE BL :N0UN PLURAL LAST :N0UN
IF"X = LAST :N0UN OP WORD :N0UN "ES
IF MEMBER? :N0UN :EXCEPTIONUST OP THING :N0UN
OUTPUT WORD :N0UN"S
END

r^

/mm̂

T e r r a p i n L o g o T u t o r i a l W - 7 9

Words and Lists

~)

19. To teach PLURAL when to add ES at the end, you
sometimes must look at the last letter of :NOUN and
sometimes at the last two letters. Figure out the rule,
and then make PLURAL smart enough to output the
correct plural for WISH.

Does it handle [BEST WISH] correctly? Can it handle
BOSS? FINCH? Does it still do the right thing for FOX?
Are you satisfied with the way it handles FISH?

20. Teach it to do the right thing with FLY.

21. Does PLURAL handle BOY and KEY correctly? If
not, fix it.

22. In project 15 above, you wrote a program to gener
ate random sentences out of the nouns in PEOPLE and
the verbs in ACTIONS. Without changing any of the
details of the program, you can add HE, [MY MOTHER],
and certain other nouns and pronouns to PEOPLE,
but, as the program stands, it will stop making gram
matical sentences if PEOPLE contains elements like
YOU, or [CHARLES AND DIANA].

This can be fixed. ACTIONS now contains the verbs
[LOVES [DREAMS ABOUT] KISSED HATES [CANT
STAND] LIKES]. If it were changed slightly, a program
similar to PLURAL could add the proper S or D end
ings when needed. This is what ACTIONS would need
to contain: [LOVE [DREAM ABOUT] KISS HATE
[CANT STAND] LIKE]

First, write a procedure, TO FIXVERB :VERB (the logic
will be similar to PLURAL, but not the same) that adds ^\
S or ES or nothing to any verb that is its input. Write

~ *)

W - 8 0 T e r r a p i n L o g o T u t o r i a l

Words and Lists
/̂ ^̂ \̂

/^^\

another procedure, TO PAST :VERB that adds D or ED
(or makes whatever other change is needed) to put the
verb in past tense.

Now write a procedure that takes a subject such as
YOU or [THE TURTLE] and figures out whether the
verb needs to be''fixed'' or not.

With these procedures you can make a better sentence
generator.

23. If you know French, you could do the same thing
for French verbs. Of course, the rules are more com
plicated, and you will need to do more designing and
more programming.

But you have all the techniques now, and some good
strategies. It is probably a good idea to have small pro
cedures, each of which does a specific job, rather than
one large procedure that does everything.

A set of procedures that conjugate French verbs can be
used in a program that generates French sentences. It
can also be used as part of a quiz on French verbs. The
next section will deal with quiz programs.

Qmiz PF&grmims: Moire Ah&mt BEQUEST (RQ]
When REQUEST is encountered in a procedure, the
procedure stops and waits until the user presses• <RETURN>. Anything that the person has typed
prior to the <RETURN> is then output by REQUEST
as a list.

T e r r a p i n L o g o T u t o r i a l W - 8 1

Words and Lists

~ i
If the person types a dozen words, REQUEST outputs a
'12 word list. If the person types nothing, REQUEST
outputs an empty list. If the person types a single
word, REQUEST outputs a one word list. The impor
tant thing to remember is that REQUEST'S output is
always a list, never a word.

Here is a model of a simple quiz program. QUIZ
"gives" the quiz, using QA to handle each question/
answer pair. QA is a subprocedure that prints the ques
tion, requests an answer from the quizee and if that an
swer is the official ANSWER, prints "YUP!" and stops.
If the answer is not judged to be correct, QA prints the
correct answer.

TO QUIZ
PRINT [TEST YOUR BRILLIANCE!]
QA [WHO IS BURIED IN GRANT'S TOMB?] [GRANT]
QA [WHY DID THE CHICKEN CROSS THE ROAD?] [TO GET GAS]
QA [HOW DO YOU SPELL RELIEF?] [CORRECTLY]

END

TOQA:QUESTION:ANSWER
PRINT QUESTION
IF :ANSWER = REQUEST PR [YUP!] STOP
PR SE [NOPE! THE ANSWER IS:] :ANSWER

END

On the surface, the logic of the addition quiz below is
identical to QUIZ. ADDQUIZ "runs" the test, calling
ADDQ with each number pair. ADDQ's inputs are two
numbers to add. It doesn't need to be told the answer,
as QA did, because it can figure out the answer itself.

~)

W - 8 2 T e r r a p i n L o g o T u t o r i a l

Words arid Lists

/̂ ^̂ *\

/^^\

Its first line prints the question—for example 7 + 9 =
— and waits for the answer at the end of the line. The
second line waits for the user to type an answer and
compares it to the calculated correct answer.

If the user's answer is the same, ADDQ prints YAY! and
stops. Otherwise it prints the correct answer. It seems
like it ought to work. Yet it has a bug.

Define ADDQUIZ and its subprocedure ADDQ, try the
quiz (by typing ADDQUIZ), and see if you can make it
work properly before reading on.

TO ADDQUIZ
PRINT [TEST YOUR ADDITION]
ADDQ7 9
ADDQ8 5
ADDQ98

END

TO ADDQ :NUMBER1 :NUMBER2
PRINT1 (SE :NUMBER1 "+ :NUMBER2 '"= ')

(buggy line) IF(:NUMBER1 + :NUMBER2) = REQUEST PR [YAY!] STOP
PR (SE "NOPE, :NUMBER1 "+ :NUMBER2 "= :NUMBER1

+ :NUMBER2)
END

Forgetting that REQUEST always outputs a list is a fre
quent source of bugs. As the procedure ADDQ is cur
rently written, it will never print YAY!. (:NUMBE£l +
:NUMBER2) is a number (and therefore a word), while
REQUEST outputs a list—the two can never be equal.

/^^ \

T e r r a p i n L o g o T u t o r i a l W - 8 3

Words and Lists

To make them comparable, we need to change
REQUEST'S list into a word. We can do this by taking
the FIRST of REQUEST. Thus ADDQ will work if
REQUEST is replaced by FIRST REQUEST or its ab
breviation FIRST RQ.

Make that change and verify that ADDQ now works by
typing

ADDQUIZ

Projects with REQUEST
24. In general, there is more than one right way to an
swer a question, yet QUIZ considers only one answer
correct. Suppose QUIZ were rewritten this way: ,_*.

TO QUIZ
PRINT [TEST YOUR BRILLIANCE!]
QA [WHO IS BURIED IN GRANT'S TOMB?]

[[GRANT] [GENERAL GRANT]]
QA [WHY DID THE CHICKEN CROSS THE ROAD?]

[[TO GET GAS] [FOR FUN] [TO LAY EGGS]]
QA [HOW DO YOU SPELL RELIEF?]

[[CORRECTLY] [ROLAIDS]]
END

In each case, a different number of correct answers has
been provided. Rewrite QA to account for the choices
of answers.

25. The biggest difference between the subprocedure
ADDQ for the addition quiz and the subprocedure QA
for the general information quiz is that ADDQ does not ̂ -*k
need to be told the answer to the question. Because >

W - 8 4 T e r r a p i n L o g o T u t o r i a l

Words and Lists

/^^^\

sam^

number pairs can be selected at random, even the ques
tions do not have to be specified one by one.

This means that the quiz can keep generating ques
tions as long as desired, without having had to list all
the questions beforehand. Write an addition quiz that
poses problems with randomly selected numbers no
larger than 12, and keeps going until the quizee gets
ten of them correct.

26. Add a bit more intelligence to the addition quiz.
Let it start by posing addition problems with very
small numbers, say under 4. If a person gets three of
them correct, the program begins giving slightly larger
numbers, and so on. The program stops if a person gets

/ • n t w o w r o n g i n a r o w .

27. Change ADDQ's title line to read TO ADDQ
:TRIES :NUMBER1 :NUMBER2 and change the proce
dure to allow a person two tries at the same problem
before the problem is changed.

ADDQ should perhaps say TRY AGAIN if the person
gets the wrong answer the first time, but should not
give the correct answer until the person gets the prob
lem wrong a second time. Then it should quit and go
on to the next problem.

28. Using the procedures PICK and QA that were
defined earlier in the solution to project 15 , write a
STATESQUIZ program that picks question-answer
sets off a pre-defined list. You might store the informa
tion in a form something like this:

MAKE "STATES [[OHIO COLUMBUS] [[NEW YORK]
ALBANY] [GEORGIA ATLANTA]]

T e r r a p i n L o g o T u t o r i a l W - 8 5

Words and Lists

29. If you used the exact list shown in project 28, and
wrote a working STATESQUIZ, it may be hard to add
states that have multi-word capitals to the list. For
example, if you now type MAKE "STATES LPUT
[IOWA [DES MOINES]] :STATES, the chances are that
when STATESQUIZ asks what the capital of Iowa is, it
will not accept any answer as correct.

Fix the quiz so that it works, either by redesigning the
data-base (:STATES) to be more consistent, or by mak
ing the procedures smart enough to handle the incon
sistency. (Suggestion: redesigning the database makes
the program simpler.)

30. If you have written a French verb conjugator, you
can write a quiz similar to ADDQUIZ that selects a verb
at random from a list, selects a pronoun, also at ran
dom, and asks the person to type in the correct verb
form.

Cownpmimg L&go Ohjje€t§: SENTENCE,
WORD, LIST, FPUT, LPUT, TEST, IFTRUE,
mmdIFFALSE

Here is a procedure, JUNKMAIL, that uses SENTENCE
and its abbreviation SE. Define JUNKMAIL, complete
with extra spaces as shown below.

TO JUNKMAIL :PERS0N
PR SENTENCE [DEAR] :PERS0N
PR [IF YOU ACT RIGHT NOW, YOU HAVE]
PR [A CHANCE TO WIN A MILLION DOLLARS!]
PR [WINNING TICKETS, ALREADY MADE OUT]
P R [I N Y O U R N A M E , A R E WA I T I N G F O R Y O U .] ^
PR (SE [THINK,] :PERS0N[, WHAT THAT COULD MEAN!]) '

END

W - 8 6 T e r r a p i n L o g o T u t o r i a l

Words and Lists
/<^ \̂

/ • • V

To run it, type JUNKMAIL followed by a list or a word,
like this:

JUNKMAIL [MS. RACHEL LEVIN]
JUNKMAIL [ABBY]
JUNKMAIL "MIKE
JUNKMAIL PICK PEOPLE

Notice, first, its handling of spaces. All of the extra
spaces you inserted are missing. Also, because
SENTENCE creates a list — outputting DEAR ABBY
instead of the word DEARABBY—-it appears to leave a
space between its inputs. The space, as noted earlier, is
not a part of the list, but merely a separator that comes
between elements of the list.

SENTENCE always outputs a list. If either input is a
word, SENTENCE treats that input as if it were a one-
element list. Thus, all four of these expressions output
the sentence [DEAR ABBY].

SENTENCE"DEAR"ABBY
SENTENCE "DEAR [ABBY]
SENTENCE[DEAR] "ABBY
SENTENCE [DEAR] [ABBY]

The last line of JUNKMAIL contains parentheses. By
surrounding the primitive SENTENCE and the three
objects that follow it, those parentheses tell Logo that
the primitive is to accept all three objects as input.

A few Logo primitives — in general, the ones
that "associatively combine" their inputs,
such as SENTENCE, WORD, and LIST, but

T e r r a p i n L o g o T u t o r i a l W - 8 7

Words and Lists

also some others such as PRINT and PRINTl
— have this ability to accept other than their
usual number of inputs when surrounded by
parentheses.

User-defined procedures cannot be given this
feature.

The procedure has a formatting bug. We would like it
to type,

THINK, MIKE, WHAT THAT COULD MEAN!

but the space that separates elements of a list has sepa
rated PERSON from the following comma, with this ^n
r e s u l t : '

THINK, MIKE , WHAT THAT COULD MEAN!

When, in PLURAL, you attached S to one of the words
in a list, you were solving a similar problem, but
JUNKMAIL adds a new twist.

If we could be certain that PERSON was a Logo word,
the change would be simple:

PR (SE [THINK,] WORD :PERS0N ", [WHAT THAT COULD
MEAN!])

But this will not work if the input is a list. Since WORD
cannot take lists as inputs, the list would first have to
be torn apart (using FIRST or LAST to extract the ele
ments, and BUTFIRST or BUTLAST to preserve the ^
rest), and then recomposed (using SENTENCE) after
the comma is affixed properly by WORD.

W - 8 8 T e r r a p i n L o g o T u t o r i a l

Words and Lists

PR (SE [THINK,] BL :PERS0N WORD LAST :PERSON ",
[WHAT THAT COULD MEAN!])

Now try JUNKMAIL twice, once with a word and once
with a list. What happens?

Since the user is free to input either word or a list, we
must take still one more step. We have a choice. One
possibility is to test the input with WORD? or LIST?
and choose which path to follow depending on the
outcome. We can perform either test and write the rest
of the IF statement accordingly. So, the logic might be:

/̂ ^ \̂

/ ^ \

IF LIST? :PERS0N do-the-list-version ELSE
do-the-word-version

or
IF WORD? : PERSON do-the-word-version ELSE

do-the-list-version

In either case, the result is a horribly long line that be
comes nearly impossible to read. Here is how it might
look inside the editor if the LIST? test were used:

IFUST?:PERSON PR (SE [THINK,]BL:!
PERSON WORD LAST :PERS0N ", [WHAT THAT !
COULD MEAN!]) ELSE PR (SE [THINK,] WO!
RD :PERS0N ", [WHATTHAT COULD MEAN!])

Logo provides another IF-like construction, TEST,
which is useful when several actions must be per
formed depending on the truth of the tested condi
tional. TEST is also useful when the actions are very
long, as they are in this case.

T e r r a p i n L o g o T u t o r i a l W - 8 9

Words and Lists

Here is how the same logic would be written using
TEST.

TEST LIST?: PERSON
IFTRUE PR (SE [THINK,] BL :PERS0N WOR!
D LAST :PERS0N ", [WHAT THAT COULD MEAN!
!])
IFFALSE PR (SE [THINK,] WORD :PERS0N !
", [WHAT THAT COULD MEAN!])

There is a less verbose alternative. Since (SE "ABBY)
and (SE [ABBY]) both output the list [ABBY],
SENTENCE can be used to convert the input, what
ever form it started in, into a standard form.

Insert the statement MAKE "PERSON (SE :PERSON) ^
as the first line of JUNKMAIL to force :PERSON to be a
list. The parentheses are needed because SE is taking
fewer than two inputs. Then, since you know that
:PERSON is a list, you need not test and can use just the
solution that applies to lists. This application of SE
often comes in handy.

LIST, FPUT, and LPUT also compose lists. It is impor
tant both to compare their effects by doing some sim
ple experiments (some will be suggested below) and to
know why anybody would care about the differences.

First, compare SENTENCE and LIST this way:

SE [THIS IS] [A LIST]
LIST [THIS IS] [A LIST]

SENTENCE outputs a list whose elements are the ele- ^
ments of its inputs, whereas LIST outputs a list whose
elements are its inputs.

W - 9 0 T e r r a p i n L o g o T u t o r i a l

Words and Lists

/^^^

/ ^ * \

,_fc^

When is this important? If you are trying to compose
a simple list of words, as in an English sentence,
SENTENCE is the right choice. Try these:

SE [THIS IS A] "SENTENCE
SE "THIS [IS A SENTENCE]
(SE'THIS [IS] "A [SENTENCE])
(SE [THIS IS A SENTENCE])
(SE "THIS "IS "A "SENTENCE)

Because SENTENCE throws away information about
the structure of its inputs, each of these expressions
outputs the same list, [THIS IS A SENTENCE]. Now try
the same sets of inputs using the primitive LIST in
stead of SE.

LIST [THIS IS A] "SENTENCE
LIST "THIS [IS A SENTENCE]
(LIST "THIS [IS] "A [SENTENCE])
(LIST [THIS IS A SENTENCE])
(LIST "THIS "IS "A "SENTENCE)

The structure of the inputs is fully preserved in the
output.

[[THIS IS A] SENTENCE]
[THIS [IS A SENTENCE]]
[THIS [IS] A [SENTENCE]]
[[THIS IS A SENTENCE]]
[THIS IS A SENTENCE]

LIST is the primitive to use when you need to package
objects, unaltered, into a list. Like SENTENCE, LIST
usually takes two inputs, but when parenthesized, it
accepts any number greater than zero.

T e r r a p i n L o g o T u t o r i a l W - 9 1

Words and Lists

Neither SENTENCE nor LIST allows you to insert an
element into an already existing list. This is the job of
FPUT and LPUT.

Each takes an object (word or list) as its first argument
and a list as its second argument. It then inserts the ob
ject into the list either to become the first element of the
new list (in the case of FPUT) or the last element of the
new list (LPUT), and outputs the new list. Try these:

FPUT "THIS [IS A SENTENCE]
LPUT "THIS [IS A SENTENCE]
LPUT [FD 50] [[RT 90] [BK 30] [LT 60]]

FPUT and LPUT are important when you are ac
cumulating information gradually and want to keep
track of it on a list. This is the reason why LPUT was
the proper primitive for storing new names of people
that GREET met in the FRIENDLY program that you
defined in the section called Some Friendly Introduc
tions.

Because LPUT created its output by packing the new
object (in that case, PERSON) into a previously exist
ing list (in that case, KNOWN), its output can later be
decomposed back to the original object and list by
LAST and BUTLAST respectively.

6> This inverse relationship of LPUT to LAST and
BUTLAST, and of FPUT to FIRST and BUTFIRST is
what makes these two primitives so important. This re
lationship is best shown by an illustration and some
experimenting.

"̂■"PK

W - 9 2 T e r r a p i n L o g o T u t o r i a l

Words and Lists

/^^^\

The relationship can be summarized this way (type
each statement below):

If WOL represents any Logo word or list, e.g.

MAKE"W0L[FD50]

and OLD.LIST represents any Logo list, e.g.

MAKE "OLD.LIST [[RT 90] [BK 30] [LT 60]]

then define NEW.LIST this way:

MAKE "NEW.LIST FPUT :W0L: OLD.LIST

Now type

PR :W0L PR : OLD.LIST PR : NEW.LIST

and observe that the following two statements are true:

:W0L = FIRST :NEWLIST
: OLD.LIST =BF: NEW.LIST

Similarly, if you

MAKE "D LPUT: WOL: OLD.LIST

then these statements are true:

:W0L = LAST:D
:OLD.LIST = BL:D

y ^ ^ K ,

T e r r a p i n L o g o T u t o r i a l W - 9 3

Words and Lists

Am AppMcmti&m apfLPUTim Interactive
"lies: RUN

^

Look back at the procedure EASY that you defined in
the early section called Interactive Graphics. Each time
certain characters are pressed, a turtle command is
executed.

The screen "remembers" the effect of each command,
but the program has no way of knowing what com
mand it executed last. It could not, for example, run
through the same sequence of commands again to
make another copy of the design on the screen.

Just as FRIENDLY was given a memory, you can add
memory to the QUICKDRAW program. Each time a
character is pressed, EASY will run the proper com- ^^
mand, and also store that command on a list.

Using the simplest combination of the strategies in
GREET and in EASY, one might rewrite each line of
EASY to look something like this:

IF :CHTR = "F THEN FD 10 MAKE "HISTORY FPUT [FD 10]
:HIST0RY

IF :CHTR = "R THEN RT 15 MAKE "HISTORY FPUT [RT 15]
:HIST0RY

IF :CHTR = "L THEN LT 15 MAKE "HISTORY FPUT [LT 15]
:HIST0RY

etc.

But there is a way of reducing the amount of repe
tition. If there was a procedure (let us call it
RUN.AND.RECORD) that could take the command
as input and be responsible for both the running and ^"""^

W - 9 4 • T e r r a p i n L o g o T u t o r i a l

Words and Lists

S l 0 ^ \

y ^ ^ \

recording of the command, EASY could be written
more economically and more understandably as:

IF :CHTR = "F RUN.AND.RECORD [FD 10]
IF::CHTR = "R RUN.AND.RECORD [RT 15]
IF :CHTR = "L RUN.AND.RECORD [LT 15]
etc.

If RUN.AND.RECORD calls its input MOVE, then the
line that records the history of moves might look like
this:

MAKE "HISTORY (LPUT :M0VE :HIST0RY)

To run a list that contains a legal Logo command or ex
pression, Logo provides the primitive RUN.

Thus, the procedure that runs and records each move
might look like this:

TO RUN.AND.RECORD :M0VE
RUN :M0VE
MAKE "HISTORY (LPUT :M0VE :HIST0RY)

END

To summarize, RUN.AND.RECORD takes an input list
containing a Logo command. It RUNs the input, and
then tucks it neatly into a list named HISTORY.

Define this new procedure and test it out a few times.
As was necessary in the FRIENDLY program, you must
first create an empty HISTORY list for
RUN.AND.RECORD to add its new moves to.

MAKE "HISTORY []

T e r r a p i n L o g o T u t o r i a l W - 9 5

Words and Lists

/*̂ ^̂ \̂

Now type these commands. (Use <CTRL>P to repeat
the line and the key to change the last few
characters. It will save you some typing!):

RUN.AND.RECORD[FD30]
RUN.AND.RECORD[RT120]
RUN.AND.RECORD [BK 10]
RUN.AND.REC0RD[RT24]
RUN.AND.REC0RD[BK5]

To print the history list, type

PR :HIST0RY

and notice that it contains a record of the commands
that generated the picture on the screen. ^_^^

[FD 30] [RT 120] [BK 10] [RT 24] [BK 5]

Using the History List: Applying a Command
o Each Element of a List

Whole new possibilities are now opened up. Re
running each of these commands will copy the design
onto the screen a second time.

Alternatively, you can achieve the effect of''undoing''
the last command (BK 5) by erasing the screen, remov
ing the [BK 5] from the history list and running what
remains.

The INSTANT program on your Utilities Disk
uses this strategy. Several of the procedures
described in this section are similar to those ^)

W - 9 6 T e r r a p i n L o g o T u t o r i a l

/ •^^^N

Words and Lists

/ " " ^ ^N

used in INSTANT. You may want to study that
program. See the Graphics chapter for a de
scription of its use.

Both of these functions require that you have a proce
dure capable of doing the same thing — in this case,
RUNning — to each of the elements of a list.

Normally RUN takes a list and executes the com
mand^) in the list. Here, the list to be run is composed
of sub-lists, each of which must be run individually.

The procedure will take the list as input:

TO RUN.ALL :C0MMANDS

If the list is empty, then the job is done, so the proce
dure stops.

IF EMPTY? COMMANDS STOP

If the list is not empty, then perform the required
action to the first element of the list.

RUN FIRST COMMANDS

And then, following the same logic, deal with the
remainder of the list.

RUN.ALLBF:COMMANDS

Define the procedure RUN.ALL.

T e r r a p i n L o g o T u t o r i a l W - 9 7

Words and Lists

TO RUN.ALL COMMANDS
IF EMPTY? COMMANDS STOP
RUN FIRST COMMANDS
RUN.ALLBF:COMMANDS

END

RUN.ALL can be thought of as a model for a
whole class of procedures. For instance, you
have already seen MEMBER?, NTH, and
COUNT. The structure of this kind of proce
dure is shown in the "ghost" procedure below:

TO X. ALL : LI ST t i t le with input
IF EMPTY? :LIST STOP condition for stopping
Y Fl RST : LI ST action to take with first element
X.ALL BF :LIST recursive call with BF input)

E N D e n d

Here is a procedure of similar structure which
erases a list of procedures.

T0ERUST:PR0CS
IF EMPTY? :PR0CS STOP
RUN LIST "ERASE FIRST :PR0CS
ERLISTBF:PROCS

END

Type these commands:

RUN.ALL :HIST0RY
RUN.ALL :HIST0RY
REPEAT2[RUN.ALL:HIST0RY]
P R : H I S T O R Y ^

\ \ j . q q T e r r a p i n L o g o T u t o r i a l

Words and Lists

/-•s

The picture has changed, but the history list has not.
Why? Because RUN.ALL did not record any of the
commands it ran; it just ran them.

To "undo" a command, we clear the screen and run all
but the last element of the history list. Of course, if the
history list is already empty, we cannot undo any more
and so should just stop.

Here is a procedure which does that:

TO UNDO
IF EMPTY? :HIST0RY STOP
MAKE "HISTORY BL:HISTORY
DRAW
RUN.ALL:HISTORY

C ^ E N D

Clear the screen with DRAW and type RUN.ALL
:HISTORY. Now type UNDO a few times to see its
effect.

Projects with History Lists
31. Edit EASY to take advantage of RUN.AND.RECORD
and UNDO. Some changes need to be made in addi
tion to inserting the two new procedures.

Try out all of the features — the old as well as the new— in a variety of combinations to be certain they work
together properly. In particular, make certain that
UNDO does the right thing when pressed right after
you have pressed the D key to erase the screen.

T e r r a p i n L o g o T u t o r i a l W - 9 9

Words and Lists

To start up the program with an empty history list, it
might be convenient to define this startup procedure:

TO STARTUP
MAKE "HISTORY []
QUICKDRAW

END

32. Add right-curving circles and left-curving circles
to QUICKDRAW.

Substituting One Word for Another in a
Sentence: A Procedure with Two Recursive
Calls

We will design a procedure that will work like this:

SUBST "DOGS "CATS [WE THINK DOGS ARE GREAT]
RESULT: [WE THINK CATS ARE GREAT]
SUBST "X PICK PEOPLE [WE LOVEX MORETHAN ANYBODY]
RESULT: [WE LOVE SANDY MORE THAN ANYBODY]
SUBST "ADV PICK ADVERBS [COLORLESS GREEN IDEAS

SLEEP ADV]
RESULT: [COLORLESS GREEN IDEAS SLEEP FURIOUSLY]

It will serve as a building block for a variety of lan
guage activities, and a model for a procedure that can
work Mad-Libs.

What is its design? It takes three inputs: a key word it
is looking for, a word to replace that one with, and a
sentence as a context in which to perform the replace
ment.

^

W - l 0 0 T e r r a p i n L o g o T u t o r i a l

Words and Lists

/"^^\

This version of SUBST will replace all occurrences of
the key word with the replacement word. Described
concretely, it can look through sentences like [WE
THINK DOGS ARE GREAT] and wherever it finds
DOGS, it substitutes CATS.

The logic is absolutely like the recursive model shown
before.

Let's review the model:

title with inputs
condition for stopping
action to take with first element
recursive call with BF input
end

The title line and stop condition are straightforward. If
there is nothing in the sentence CONTEXT, there is
nothing to substitute, so the procedure outputs an
(identical) empty sentence.

The remaining two lines introduce a new twist. The
action to take with the first element is clear: if it is the
key word :KEY that we are looking for

IF (FIRST :CONTEXT)=:KEY

the procedure must replace it with :NEW. Replacing
the first element of a list means keeping the butfirst.
SUBST must output a sentence composed of the new
first element with the butfirst of the original
CONTEXT. This, by itself, is

^ O P S E : N E W B F : C O N T E X T

T e r r a p i n L o g o T u t o r i a l W - l 0 1

Words and Lists

But the object is to catch every occurrence of KEY in
CONTEXT. SUBST changed one occurrence at the be
ginning, but the code line we just wrote takes the but-
first of the CONTEXT without checking further.

Instead of BF :CONTEXT itself, what we really want is
the result of a continued substitution of NEW for KEY
in that BF :C0NTEXT So the action really is

OP SE :NEW SUBST :KEY :NEW BF :C0NTEXT

and the logic of that line is

IF (FIRST :CONTEXT) = :KEY OP SE:NEW SUBST :KEY:NEW
BF:CONTEXT

If there is no substitution to make, of course, SUBST ^""^
will keep the first element, but it still must check
further in the sentence for later occurrences of the key
word. The action in this case is nearly identical to the
previous action except that the first element of the list
is not changed to NEW but kept as is:

OP SE FIRST :C0NTEXT SUBST :KEY :NEW BF :C0NTEXT

Here is the entire procedure:

TO SUBST :KEY :NEW rCONTEXT
IF:C0NTEXT = []0P[]
IF (FIRST :C0NTEXT) = :KEY OP SE :NEW SUBST :KEY

:NEWBF:CONTEXT
OP SE FIRST :C0NTEXT SUBST :KEY :NEW BF :C0NTEXT

END

W - l 0 2 T e r r a p i n L o g o T u t o r i a l

Words and Lists
/ " ^ ^ N

And here are some examples of its use.

SUBST "VERB "LOVES [PAUL VERB CINDY]
SUBST "VERB PICK ACTIONS [THE TURTLE VERB DALE]
SUBST "NAME "CHRIS [NAME KISSED NAME]
SUBST "NAME PICK PEOPLE [NAME WONT SPEAK TO

NAME]
SUBST "ADV PICK [STEALTHILY CREATIVELY [WITH

EXCEPTIONAL SPEED] HUNGRILY] [CATS CAN CLIMB
TREES ADV BECAUSE OF THEIR SHARP CLAWS]

Although the procedure does everything it is adver
tised to do, it is not quite right for Mad-Libs. The prob
lem is that in a command like PR SUBST "NAME PICK
PEOPLE [NAME WONT SPEAK TO NAME], both

^ NAMEs are replaced by the same PICK from PEOPLE.

Why? Because the picking is done first. SUBST is pre
sented with one name, selected at random by PICK, to
use everywhere it finds the key word.

SUBST is useful as it is (because sometimes it is neces
sary to specify a particular replacement to make) but
for Mad-Libs, it would be better to have a procedure
that looked for a key word and each time it found one,
selected at random from a list of potential substitutes.

Such a procedure would need inputs giving the key
word and context as before, but instead of having a
designated substitute, it should be given a list of alter
nates from which to pick each time the need arises.

/ " • \
TOMAD:KEY:ALT:CONTEXT

T e r r a p i n L o g o T u t o r i a l W - l 0 3

Words and Lists
^ " ^ ^ ~ ^ ^ ~ ~ >

The stop rule would be the same.

IF :C0NTEXT=[] OUTPUT []

And if there's no substitution to make, the action is the
same.

OP SE FIRST:CONTEXT MAD :KEY :ALT BF:CONTEXT

Only when a KEY is found must MAD behave differ
ently from SUBST. Compare the corresponding lines.

IF (FIRST :CONTEXT) = :KEY OP SE:NEW SUBST :KEY:NEW
BF :C0NTEXT

IF (FIRST :C0NTEXT) = :KEY OP SE PICK :ALT MAD :KEY :ALT
BF:CONTEXT

SUBST is given a fixed substitute as input, whereas
MAD picks the alternate itself whenever it needs to.
Otherwise, they are identical.

Here is the finished procedure:

TOMAD:KEY:ALT:CONTEXT
IF :C0NTEXT = [1 OUTPUT []
IF (FIRST :C0NTEXT) = :KEY OP SE PICK :ALT MAD :KEY

: ALT BF: CONTEXT
OP SE FIRST :CONTEXT MAD :KEY :ALT BF :CONTEXT

END

And here are some examples of its use.

MAD "NAME PEOPLE [NAME KISSED NAME]
MAKE "ADVERBS [STEALTHILY CREATIVELY [WITH EXCEP- ^

TIONAL SPEED] HUNGRILY]

~)

y j _ 1 0 4 T e r r a p i n L o g o T u t o r i a l

/ ^ ^

Words and Lists

MAD "ADV:ADVERBS [DOGS DO NOT CLIMB TREES ADV OR
ADV]

MAD "V ACTIONS [PATV CHRIS, BUT DALE V DANA.]

More can be done with MAD. Since MAD creates and
outputs an object (rather than just printing its finished
product), that object can be processed further. Try this:

MAD "NAME PEOPLE [NAME V NAME]

The object it produced is something like [SANDY V
THE TURTLE]. If this object were made the input to
MAD, the V could be replaced with some action. This
can be done in one step.

MAD "V ACTIONS MAD "NAME PEOPLE [NAME V NAME]

The output from MAD "NAME PEOPLE [NAME V
NAME] becomes the third input to MAD " V ACTIONS

y - m ^

Try

MAD "ADV:ADVERBS MAD "X PEOPLE MAD "V ACTIONS [X
V AND VX ADV AND ADV]

Projects with Mad-Libs
33. Create a MADLIB procedure that takes one input,
a text, and looks for Verbs, Nouns, Proper Names,
AD Verbs, and ADJectives to substitute. You might use
[THE ADJ N V MY ADJ N PN ADV] as a test text.

T e r r a p i n L o g o T u t o r i a l W - 1 0 5

Words and Lists

34. Punctuation in a sentence will interfere with
MAD the way it is now written. For example, MAD "V
ACTIONS [PAT V CHRIS, BUT DALE V DANA.] will
work, but MAD "PN PEOPLE [PN LOVES PN, BUT PN
CANT STAND PN.] will not. (You may want to try it to
see it fail.)

The substitution must be more sophisticated to handle
punctuated sentences. It must look at each word in the
sentence and perform tests to determine if it is a key
word. Then, after choosing an alternative, the proce
dure must affix the proper punctuation to that new
word.

Write a version of MAD that works correctly in both of
the contexts shown above.

35. As MADLIB is now written, it finds substitutes for
a fixed set of key words. A slightly more versatile pro
gram would take two inputs, the context (as always)
and a list of key words to look for. Then it would sys
tematically look through the context for instances of
each of the key words and make the proper substitu
tions. Write a procedure that will do this.

Umderstmmdimg Lamgmmge: Searching for KeyWords mmdMmtckimg Semtemces to TemmpMtes.
ALLOW, ANYOF
FRIENDLY, when we last left it, expected a nice, tame
answer to its question, "WHAT'S YOUR NAME?" It
would respond unintelligently if you typed MY
NAME IS PAUL or NONE OF YOUR BUSINESS when
it asked. Here is a scenario that looks more intelligent,
as if FRIENDLY really understands language.

^

^

W - l 0 6 T e r r a p i n L o g o T u t o r i a l

Words and Lists
/ • ^ N

FRIENDLY
WHAT'S YOUR NAME?
MY NAME IS PAUL.
HI, PAUL! IT'S NICE TO MEET YOU.

FRIENDLY
WHO ARE YOU?
NONE OF YOUR BUSINESS
YOU SEEM TO BE IN A BAD MOOD. BYE.

FRIENDLY
WHAT'S YOUR NAME?
WHAT'S IT TO YOU?
I WAS JUST CURIOUS.

^ F R I E N D L Y
MY NAME IS LOGO. WHAT'S YOURS?
PLEASE CALL ME PAUL
GOOD TO SEE YOU AGAIN, PAUL.

FRIENDLY
HI, WHAT'S YOUR NAME?
PAUL
AH, YOU'RE BACK. HI, PAUL.

FRIENDLY is exhibiting a number of behaviors we re
gard as intelligent. It is not confused by punctuation.
Also, its phrasing is flexible. But, most important, it
has always responded appropriately.

How can we design it so that it will reliably recognize
the name in an arbitrary phrase? We might start by try
ing to figure out how people do that./^^ \

T e r r a p i n L o g o T u t o r i a l W - 1 0 7

Words and Lists
/ ^ ^ f \

Do we listen to all the words in the sentence and look
up each one on a list of possible names? Unlikely. If a
Martian said to you, "Hi, my name is Xqpsnpfltk," you
might not be able to repeat the name, but you'd know
you were being told one.

You'd know because you understood the rest of the
sentence and realized that whatever that sound was
that came at the end, that had to be this creature's
name.

All is not hopeless. Although we cannot expect to
write a procedure that is capable of understanding all
of English, we can analyze the likely language that this
particular conversation will contain.

If the procedure encounters something we have an
ticipated, it can give a specific appropriate answer.
Otherwise, it will have to give a neutral answer.

Here's how it might work. First we list some possible
phrases it may see. One limitation we will impose is
that people always respond only with their first name,
and not with first and last, or title and last, etc. (That
complication comes later.)

Cooperative responses might include:

<name>
My name is <name>
People call me <name>
Please call me <name>
<name> is my name
I a m < n a m e > ^ " " " ^

W - l 0 8 T e r r a p i n L o g o T u t o r i a l

Words and Lists

Uncooperative responses should include:

None of your business!
I won't tell you.
I don't want to tell
I'm not telling you.
What's it to you?
Go away

Let's work with the cooperative responses first. Sup
pose we create a series of templates based on likely
response patterns. If we had a procedure that could
match what the person types to each of the templates,
and, where it found a match, record what word corre
sponded to the "wild card" <name>, that would be a

^ ^ b i g h e l p .

For example, suppose we had a procedure MATCH?
which would tell if a sentence matched a template. For
example, the actual sentence

MATCH? [MY NAME IS PAUL]

used with the template

[MY NAME IS ©NAME]

with the wild card identified by the at-sign, would
give the result TRUE.

Suppose, furthermore, that if the sentence and
template do match, then the matching word in the
sentence (in this case, PAUL) and the name of the wild

^^ card it corresponded to (in this case, there is only
one, @NAME) are saved in a special variable named
©©MATCHES. Then, after this match,

T e r r a p i n L o g o T u t o r i a l W - 1 0 9

Words and Lists

©©MATCHES would have the value [[@NAME
PAUL]].

Let's also suppose we have a way of looking for a wild
card in this list and outputting the word associated
with it; thus LOOKUP " @NAME would output PAUL.
If we had such procedures, then we could write a lan
guage understander that looked like this.

TO OUTPUT.NAME :SENT
IF MATCH? :SENT [MY NAME IS @NAME] OP LOOKUP "@NAME

:@@MATCHES
IF MATCH? :SENT [@NAME IS MY NAME] OP LOOKUP "@NAME

:@@MATCHES
IF MATCH? :SENT [I AM @NAME] OP LOOKUP "@NAME
: @ @ M A T C H E S ^
IF MATCH? :SENT [@JUNK CALL ME ©NAME] OP LOOKUP

"@NAME:@@MATCHES
IF 1 = COUNT :SENT OP FIRST :SENT
OP [I WAS JUST CURIOUS]

END

The first three lines explain themselves. If the sentence
typed by the person to FRIENDLY is of any of those
forms, a match will occur, and LOOKUP will find the
name.

The fourth line has two wild cards in it. It takes care of
both PLEASE CALL ME PAUL and PEOPLE CALL ME
PAUL.

The fifth line assumes that if the person answers with
only a single word, that word is probably the name.
And the sixth line is a "punt." If no other strategy ^"^
worked, this answers "neutrally" with a nothing
answer.

w . j j q T e r r a p i n L o g o T u t o r i a l

Words and Lists

/ ^ • n

There are some problems with this procedure as it was
written. The most striking is that it can supply either
the right answer (a name) which must then be tucked
into some reply by GREET (depending, for example,
on whether GREET has met the person before or not) or
an entire reply which should not be further altered.

GREET, of course, can tell the two situations apart, as
the name is a word, and the full reply is a list.

Second, we have not dealt at all with the "uncoopera
tive responses." More on those later. Meanwhile, how
do MATCH? and LOOKUP work?

MATCH? will need two inputs — the sentence in ques
tion, and the template to check it against.

TO MATCH? :SENTENCE TEMPLATE

It will need to make sure that the variable @ ©MATCHES
is cleaned out before checking to see if the sentence
matches the template.

MAKE ©©MATCHES []

Finally, it performs the check.

OP CHECK SENTENCE TEMPLATE

So the procedure looks like this:

TO MATCH? SENTENCE TEMPLATE
MAKE"@@MATCHES[]
OP CHECK SENTENCE TEMPLATE

^ E N D

T e r r a p i n L o g o T u t o r i a l W - l 1 1

Words and Lists

^

But, we've put off the major part of the work! How does
CHECK check?! It, too, must take both the sentence
and template as inputs.

TO CHECK :S T

If these two do match, it should output TRUE. If they
don't, it should output FALSE. (This is not, of course,
all it does. It must also identify what element of the
sentence corresponded to the "wild card" in the
template, but we will worry about that later.) A trivial
case of matching is when both the sentence and the
template are empty.

IFALLOF:S = []T = []OP"TRUE

If they are not both empty, but one of them is empty, ^)
then they surely do not match.

IF ANYOF :S = [] T = [] OP "FALSE

If the first element of the sentence and the first element
of the template are the same, then a match is possible,
but not definite. In this case, the answer is to be found
in checking the remaining elements of the sentence
and the template for a match.

IF (FIRST :S) = FIRST T OP CHECK BF :S BF T

Likewise, if the first element of the template is a wild
card, then a match is possible, but not definite. Again,
the answer is to be found in checking the remaining
elements of the sentence and the template for a match.

W - l 1 2 T e r r a p i n L o g o T u t o r i a l

Words and Lists
■^•.^.^.W

/ * ^ \

In this case, however, the procedure must do one
additional thing. It must record what the first element
of the sentence was when it encountered the wild card
as the first element of the template.

IF WILD? FIRST T (RECORD FIRST T FIRST :S) OP CHECK BF
:SBFT

Notice that both WILD? and RECORD are just tossed in
there as if we already knew how they should work. We
don't, and Logo has no such primitives to help us with,
but we can design those procedures later.

At present, all we are trying to do is handle the top
level logic of CHECK. Surely, if WILD? and RECORD
existed, this line would be what we want.

Finally, if the first of T is neither wild nor matches the
first of S, then there is no match, so we output FALSE.

This is how the procedure looks so far.

TO CHECK :S T
IFALLOF:S = []T = []OP"TRUE
IFANYOF:S = []T = [] OP "FALSE
IF (FIRST :S) = FIRST T OP CHECK BF :S BF T
IF WILD? FIRST T(REC0RD FIRST TFIRST :S) OP CHECK BF

:S BF T
OP "FALSE

END

T e r r a p i n L o g o T u t o r i a l W - 1 1 3

Words and Lists
/*^^%tv

What WILD? does depends on how we choose to indi
cate a wild card. Since we have decided that wild cards
begin with the at-sign character, WILD? need only
check for that character as the first character of its
input.

TO WILD? :W0RD
OP "@ = FIRST: WORD

END

RECORD creates a list of the key and the matched
word, and tucks that list into @ ©MATCHES to be
retrieved when needed by LOOKUR

TO RECORD :KEY MATCHED WORD
MAKE "©©MATCHES LPUT LIST :KEY :MATCHEDWORD
:@@MATCHES

END

And LOOKUP will look systematically through each
element of @ ©MATCHES until it finds one whose
first element is the key word. It will then output the
second element. Notice how similar its structure is to
the model recursive procedures you have seen before.

TO LOOKUP :KEY :LIST
I F : U S T = [] 0 P "
IF :KEY = FIRST FIRST :UST OP LAST FIRST :LIST
OP LOOKUP :KEYBF:LIST

END

/ " ^ ^ ^ K

/ ^ ^ ^ ^ V

W - l 1 4 T e r r a p i n L o g o T u t o r i a l

Words and Listsr

/^^\

sW^tK^

Now try running OUTPUT.NAME a few times.

OUTPUTNAME [MY NAME IS ASHER]
OUTPUT.NAME [PLEASE CALL ME ISHMAEL]
OUTPUT.NAME [WHAT'S IT TO YOU?]
OUTPUT.NAME [PAUL]

Projects with Lmmgumge Understanding
36. Add OUTPUT.NAME to the FRIENDLY program.
FRIENDLY must still be capable of responding differ
ently to old people and new people, and must have the
added ability to pull names out of the contexts in
which they are typed. Do not yet worry about other de
tails (e.g. punctuation) yet.

37. To add a bit more sensitivity to the uncooperative
responses, you might design a procedure that looks for
"negative words" in the sentence, words like WONT,
NONE, DONT, NOT, and the like, and outputs a "neu
tral" response to a negative.

Such a response might be YOU SEEM TO BE IN
A BAD MOOD, or SORRY I ASKED. Add that to
OUTPUT.NAME in such a way that no other changes
need to be made to GREET or FRIENDLY.

38. Wherever fixed phrases are now used, teach the
program to vary them using PICK and a phrase list. If it
is necessary to embed the name in a phrase, SUBST
can do the work.

T e r r a p i n L o g o T u t o r i a l W - l 1 5

Words and Lists

39. Finally, fix the program not to get stumped by
punctuation.

40. As CHECK is currently written, [MY NAME IS
©NAME] would match [MY NAME IS ASHER] but
would not match [MY NAME IS ASHER LEV] because
only one word can match a wild card.

Likewise, [@JUNK CALL ME ©NAME] would not
match [CALL ME ISHMAEL], because some word
must be present to match @JUNK.

A better CHECK program would recognize two kinds
of wild cards, one that matches to exactly one word in
the sentence (the situation we already have), and
another that matches to any number of words in the /~*\
sentence, including 0.

The new wild card would have to be symbolized dif
ferently, perhaps by a number-sign prefix. So CHECK
would be able to tell that both CALL ME ISHMAEL and
MY CLOSE FRIENDS CALL ME SIR OLIVER match
the template [#JUNK CALL ME #NAME], but that
[MY NAME IS HARRIET BEECHER STOWE] fits
another template.

W - 1 1 6 T e r r a p i n L o g o T u t o r i a l

r

The Music chapter of this tutorial assumes that you are
familiar with your Apple keyboard and some Logo
primitives (commands Logo already knows). For
explanations of commands and concepts not explained in
detail here, see the Graphics chapter. In addition, the
Logo Command Glossary lists all Logo primitives and
their uses.

Some background: a Logo procedure is a series of in
structions to the computer stored for recurrent use. A
procedure can be used in other procedures just as if it
were a Logo primitive.

Procedures are stored in files on disks. The SAVE
command stores the entire contents of the workspace
to the disk as a file with the name which you give it.
See the Saving Procedures section in the Graphics
chapter. Care should be taken to SAVE work before
turning the computer off, as this clears the workspace.

Prepmrmtion: MEAD

The Utilities disk contains the procedures required to
make music in Logo, as well as the demonstration pro
cedures we shall use. Start Logo as described in the
Beginning in Logo chapter. Then insert your copy of
the Utilities disk. Type

READ "MUSIC <RETURN> (only one quote)

(Logo does not hear what you type until you press the
<RETURN> key.)

Wait for the light on the disk drive to go off and the
question mark prompt to appear on the screen.

T e r r a p i n L o g o T u t o r i a l M - i

Music

~)

There are three music files on the Utilities disk. You
have just read one file, MUSIC, into the workspace.
MUSIC automatically reads in another of the music
files called MUSIC.BIN, which contains the machine-
language routine which does the actual work of
making the Apple produce a sound. The third file is a
demonstration file called TWINKLE, which will be
used later.

To start, we will experiment with pitch and duration,
concepts with which most people are familiar.

G>

Duration

Duration is usually thought of as how long a note is
held. (You could also think of it as the time from the
beginning of one note to the beginning of the next.) To
start, let's use a procedure named TONE which plays a
note for a specified duration. Type

TONE 40
TONE 80
TONE 80 TONE 80
TONE 80 TONE 40 TONE 80

Typing TONE over and over gets tiresome. To save
yourself work, try using the REPEAT command. For
instance:

REPEAT 10 [TONE 40]
REPEAT 10 [TONE 20]
REPEAT 10 [TONE 20 TONE 40]

M - 2 T e r r a p i n L o g o T u t o r i a l

Music

There is an even better way: the TONES procedure.
TONES takes a list of durations to play. (A list for Logo
is any list of items enclosed in square brackets.) Type

TONES [40 40 40 40]
TONES [80 80 80 80]
TONES [40 80 40 80 40 80]

You have probably noticed that the numbers for dura
tions are related in a special way. For instance, a dura
tion of 80 is twice as long as one of 40 and similarly, 60
is twice as long as a duration of 30. Try typing

TONES [80 80 80 80 40 40 40 40]
TONES [30 30 30 30 60 60]

^ T O N E S [4 0 4 0 2 0 2 0 4 0]
V T O N E S [8 0 8 0 4 0 4 0 8 0]

Notice that the last two examples sound the same
except that the last one goes slower. Another way of
saying this is that the relative durations of the last
two examples are the same.

If you know the symbols used in music notation, you
will see that they relate to each other in a manner simi
lar to that of the numbers we have been using. If 40
were used as a whole note, then 20 would be a half
note, 10 a quarter note and 5 an eighth note.

Of course, we could have used another number instead
of 40 as our whole note. If we made 60 a whole note,
then 30 would be a half note, and 15 a quarter note.
Using 40 as the whole note instead of 60 will speed up

f ^ ^ t h e t e m p o .

T e r r a p i n L o g o T u t o r i a l M _ 3

Music

You don't have to change the durations to be able to
change the tempo (the speed at which the piece is
played). The procedure TEMPO allows you to do this.
(The default value for TEMPO is 100.) Speeding up or
slowing down the tempo will make the durations
sound shorter or longer, but each duration will still
have the same relation to the other durations as it did
before. Try

TONES [80 80 40 40 80]
TEMPO 50
TONES [80 80 40 40 80]
TEMPO 100
TONES [80 80 40 40 80]

You can use TONES to create any rhythm you want. ^)
For example, try

TONES [80 40 40 80 40 40 80]

You can use <CTRL>P to bring back copies of the pre
vious line so that it will play several times in a row.
However, let's use REPEAT instead.

REPEAT3 [TONES [80 40 40 80 40 40 80]]
REPEAT3 [TONES [60 15 15 60 15 15 60]]

Notice how the beats seem to regroup when you
REPEAT these patterns several times instead of play
ing them just once.
You can vary the duration within a wide range. Num
bers higher than 1000 can be used but a duration of
1000 is very long. You can also use decimal numbers as ^"^
well as whole numbers for durations.

M - 4 T e r r a p i n L o g o T u t o r i a l

>_BK

/̂ m^

Music
i

Pitch

Now let's try varying the pitch while keeping the dura
tions constant. To do this we use a different procedure
named PLAY, which takes as input a list of pitches and
a list of durations. The first duration is paired with the
first pitch, the second duration with the second pitch
and so on. Type

PLAY [12 3 4 5 6][40 40 40 40 40 40 40]

(Notice that there is an extra duration in the second
list. Logo ignores extra durations in input lists, but it
will give an error if there are more pitches than dura
tions.)

Each pitch is a half step higher than the one before.
This is called the chromatic scale. An octave is divided
into twelve pitches, each a half step apart. The num
bers below correspond to the more common musical
notation as follows.

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3
C C# D D# E F F# G G# A A# B C

You should notice that the letters that are not followed
by a # sign (read sharp sign in music notation) corre
spond to the white keys on the piano. The numbers
that are paired with these letters (1,3, 5, 6, 8,10,12,
and 13) make the C major scale. You can make a major
scale starting with any number using the same rela
tions among the numbers as in the C major scale.

C Major Scale 13 5 6 8 10 12 13
D Major Scale 3 5 7 8 10 12 14 15

T e r r a p i n L o g o T u t o r i a l M " 5

Music

An interesting project for more advanced users is to
make a procedure that will generate a major scale start
ing on any pitch. The major scale is one of the diatonic
scales. Try typing

PLAY [1 3 5 6 810 12 13][30 30 30 30 30 30 30 30 30]
PLAY [3 5 7 8 10 12 14 15][30 30 30 30 30 30 30 30 30]

Notes are numbered from 1 to 24. However, adding a
plus sign (+) to a number will make the note one oc
tave higher. Similarly, adding a minus sign makes the
note an octave lower.

For instance, 1 + is an octave higher than 1. (Do you see
that 1+ is the same as 13?)

Try your own combinations of pitches and durations ^^
with PLAY. The pitches can only be whole numbers,
but you can use any number, even a decimal or frac
tion, for durations.

There is also a procedure named SING which takes
only a list of pitches and plays each with a constant
duration. If you are experimenting with just pitches,
this procedure will save you a lot of typing. The two
PLAY commands above could easily have been done
instead as

SING [13 5 68 10 12 13]
SING [3 57 810121415]

Rests are another feature which you can use with PLAY
or SING. Type in the letter R in place of one of the

M-6 Terrapin Logo Tutorial

Music

pitches, and no sound will be played for the duration
corresponding to that pitch. Type

PLAY[1+ 1+ R1+ R1+] [40 40 40 40 40 40]
SING [1+ 1+ R1+ R1+]

Procedures

Typing everything out each time can become tiresome,
even if you do make use of <CTRL>P and the REPEAT
command. Writing procedures will allow you to keep
a record of the tunes you create.

For instance, to make a comparison of the chromatic
and major scales easier, you might want to create the
two following procedures so you can play them again
easily in any order you want.

TOC
PLAY [1234567891011 1213]

[30 30 30 30 30 30 30 30 30 30 30 30 30]
END

TOM
PLAY [13 568 10 12 13]

[3030303030303030]
END

Here is a neat way of turning a PLAY statement into a
procedure.

a. Find a tune you like using PLAY.
b. Press <CTRL>P to print it out again, but do not

press <RETURN>.

T e r r a p i n L o g o T u t o r i a l M * 7

Music
r ~ ~ _ ^

c. Use <CTRL>A to move the cursor to the beginning
of the line.

d. Type the name of your procedure, e.g. TO TUNEl,
followed by a space. The rest of the line will move to
the right as you insert new words.

e. Press <RETURN>. You will be in EDIT mode with
everything you typed on the first line (the title line). •

f. Move the cursor to the space between the title and
the word PLAY.

g. Press <RETURN>. The part of the line to the right
of the cursor will move down to the next line.

h. Press <CTRL>C to define your procedure.
i. Type the procedure name (e.g. TUNEl) to play it.

Following is an example of a procedure that will give
you quick feedback, which is useful if you are trying to ^^^
p i c k o u t a t u n e . ^)

TO QUICK
PLAY (LIST RC) [15]
QUICK
END

Type QUICK to start the procedure and <CTRL>G
when you want to stop it. Now typing any single digit
number (except 0) will play a note.

It is useful to make procedures that will play phrases or
pieces of a song. We will call these tune blocks. Then
you can link these tune block procedures together to
make the whole song, like putting together the blocks
in a jigsaw puzzle. As an example, type

TO BELLI
P L A Y [5 + 1 + 3 + 8] [8 0 8 0 8 0 8 0])
END

M - 8 T e r r a p i n L o g o T u t o r i a l

/ *^^^N

/_■*,

r

Music

Now type BELLI if you haven't already. The tune is
part of Westminster Chimes. So far we only have the
first part of it and the rhythm doesn't seem quite right.
Try increasing the duration of the last note to see if that
sounds better. Instead of trying to add the entire tune
into the procedure BELLI, you can break it up into
blocks and write a superprocedure which uses them.
This also allows you to use any of the blocks over
again. The superprocedure could look like this:

TO BELL
BELLI
BELL2
BELL3
BELL2
END

So far we have BELLI. The following procedure makes
the third block in the tune.

TO BELL3
PLAY [5+ 3+ 1+ 8] [80 80 80 160]
END

Notice that the only change is that two of the pitches
are reversed, but even a small change makes an impor
tant difference. We leave BELL2 to you to create. (Hint:
Try rearranging these same pitches in another way,
keeping the durations in the same order.)

For a similar example, read in the file TWINKLE by
typing

READ "TWINKLE

T e r r a p i n L o g o T u t o r i a l M _ 9

Music

You have probably already guessed what tune this file
will play. If you haven't, or even if you have, type
STAR. Type PO STAR to see what the superprocedure
looks like. Each of the subprocedures for STAR is a
tune block.

TO STAR
STAR1
STAR2
STAR3
STAR3
STAR1
STAR2
END

The STAR superprocedure is designed in the same
way as the BELL superprocedure. If you print out
STAR1, STAR2, and STAR3, you can see that each uses
the procedure RHYTHMl to specify its duration list.
Notice what happens if you change the rhythm

from [40 40 40 40 40 40 120]
to [60 20 60 20 60 20120]

You can still recognize the original tune but this makes
a varied version of it. It works because each pair of 40's
is changed to 60 and 20, and both 40+40 and 60+20
add up to 80. Notice that it sounds like a waltz now in
stead of a march. Try reversing the 60 and the 20 so it is
20 60 20 60 20 60 120. It sounds strange, right, almost
like a new tune? This is because the durations make
the pitches group together in a different way.

z"^^^.

/*̂ %̂\

M - i o T e r r a p i n L o g o T u t o r i a l

r

Music

>Try playing STARl, 2 and 3 in various orders to see if
you can make a new tune. Don't forget the possibility
of repeating the same block twice. Here is one example
of a different tune.

STAR3 STAR2 STAR1 STAR1 STAR3 STAR2

You already know what the durations are for STARl.
Now, see if you can figure out what the pitches are
without looking. The only pitches you will need are 1,
3,5,6,8, and 10, pitches in the C Major Scale. To exper
iment, use the QUICK procedure shown earlier.

Try creating tune blocks for other tunes that you know.
Instead of numbering the blocks in the proper order,
pick a random order and see if your friends can figure
out how the blocks fit together. Most familiar tunes use
only the pitches of a major scale.

Ammlyses of the Utilities Disk Music
Prmedmres: STOP9 FSES% BUTFERST (BF),
THING, WOMD9 Top Level
PLAY: a recursive procedure to play a list of notes with
a list of durations.

TOPLAY:PITCHES:DURS
IF EMPTY? .PITCHES STOP
PLAY.NOTE (FIRST .PITCHES) (FIRST :DURS)
PLAY (BF .PITCHES)(BF:DURS)
END

T e r r a p i n L o g o T u t o r i a l M - n

Music

Line 1: title, including the local variables :PITCHES
and :DURS, which represent values input when the
procedure is run.

Line 2: IF-THEN statement without the optional
THEN. Line 2 says IF it is true that there are no more
pitches to be played (i.e. the list :PITCHES is empty,
THEN STOP running this procedure and return con
trol to whatever called it, which might be another pro
cedure or the user (also called "top level").

Line 3: Run the procedure PLAY.NOTE, using for
inputs the first elements of the lists :PITCHES and
:DURS. The local variables in the title line of PLAY.NOTE,
:PERIOD and :DURATION, are given the values
FIRST :PITCHES and FIRST :DURS, respectively. ^

Line 4: Run PLAY again, using the rest of the list
:PITCHES and the rest of the list :DURS as the two
inputs.

BF is short for BUTFIRST. BF :PITCHES is the list
:PITCHES without its first element. USing BF recur
sively, as it is used here, enables one to work through a
list element by element. The procedure will stop in
Line 2 when the list is exhausted.

Use of the list operators FIRST and BUTFIRST is
explained in the Words and Lists chapter.

/̂ *̂*\

M - 1 2 T e r r a p i n L o g o T u t o r i a l

Music

TONE, TONES, SING: All these procedures are special
versions of PLAY. Note that TONE and SING use the
primitive SENTENCE (SE) to put information into a
list before passing it to PLAY, which requires lists for
its inputs.

For a full discusion of SENTENCE, see the Words and
Lists chapter.

PLAY.NOTE: a procedure to play one note.

TO PLAY.NOTE :PERI0D :DURATI0N
MAKE "PERIOD THING WORD "# :PERI0D
.CALL2 :T0NE .PERIOD :DURATION*:BASE.PERIOD

APERIOD
END

Line 1: The title, including the local variables :PERIOD
and DURATION.

Line 2: Line 2 pastes a # onto the front end of the
•.PERIOD brought into the procedure. The Logo primi
tive WORD makes one word out of # and whatever
came in as :PERIOD; for instance, # and 5 make #5.

The THING of a variable is the value associated with
that name. THING "PERIOD is the same as :PERIOD.
THING is used when there is no actual variable name
to put the dots on.

MAKE gives this value to the global variable :PERIOD.

T e r r a p i n L o g o T u t o r i a l M - 1 3

Music

Line 3: Runs the procedure .CALL.2 using the follow
ing for inputs:
For :ADDR—the value of the global variable TONE

(defined by SETUP)
For :INPUT1—the value of the local variable :PERIOD
For :INPUT2—a value obtained by the calculation

shown

M - 1 4 T e r r a p i n L o g o T u t o r i a l

JPRllNTiiN

This chapter contains information on printing text and
graphics using a variety of printers and plotters.

NOTE: The following examples assume that your
printer is attached to slot 1 of your computer. If your
printer is connected to a different slot, use that number
rather than 1 in these examples. If you are using an
Apple IIGS computer and your printer is connected to
the Printer Port, set the Slot 1 option to PRINTER
PORT at the Control Panel.

Printing Text
The process of printing text is quite straightforward,
regardless of the type of printer you have.

The command OUTDEV allows you to turn on and off
any slot inside the computer. A printer is generally
connected to slot 1 or a printer port, which looks to the
computer like slot 1. Typing OUTDEV 1 activates the
printer; typing OUTDEV 0 deactivates it.

While the printer is activated, any Logo instruction that
you enter will send output to the printer.

To print a catalog listing of your disk, for example, you
could type

OUTDEV 1
CATALOG
OUTDEV 0

To obtain a paper printout of a procedure called
CIRCLE, you could type

Terrapin Logo Tutorial P-l

Printing

OUTDEV 1
PRINTOUT CIRCLE
OUTDEV 0

You can print out procedures, names of procedures,
names of variables or the entire contents of your
workspace (both procedures and variable names) using
the following instructions.

PO TITLES (POTS) lists the titles of all procedures.
PO PROCEDURES lists all procedures, but no names.
PO NAMES lists just variable names and their values.
PO ALL lists all procedures and names.

Use the printing utilities described in this chapter to ^\
print a Logo picture immediately after you create it, or
first save the picture on a disk and print it later. The
SAVEPICT command will store the graphics screen
image to disk. An extension of .PICT is added to the
filename you give a picture in order for Logo (and you)
to differentiate it from other files.

Printed pictures will have slightly different proportions
from the screens that produce them. That is because the
aspect ratio (squareness of the dots that make up the
image) of a printer is different from that of a video
monitor or television. The standard value for .ASPECT
is .8. For better hardcopy results, you might want to
determine the proper aspect ratio to use with your
printer. For example, type .ASPECT .9 before drawing
your screen picture (using .ASPECT after drawing
your picture has no effect). Note that this results in
elongated screen graphics that come out properly on the ̂ _^^
printer. Frequently you can compromise by setting the '^i

p . 2 T e r r a p i n L o g o T u t o r i a l

Printing
i

aspect ratio to be between that of the monitor and that of
the printer, with negligible bad effects.

Printing Logo Graphics Using Other Programs
When you save a Logo design using the SAVEPICT
command, it is stored on the disk as a standard picture
file. There are a number of commercially available
programs that can read Logo pictures and print them
using a variety of printers. In many cases, you can
enhance your Logo picture using the graphics tools that
these programs provide.

y^w Terrapin Logo for the Apple saves its pictures using the
U j)l DOS 3.3 operating system, so you may be able to load^ them directly into other DOS 3.3 programs. Logo

PLUS saves its pictures using ProDOS, so you will need
(^^ to read the pictures it saves into ProDOS-based

packages. However, since you can convert picture files
from one operating system to the other with the
ProDOS User's Disk, you have the flexibility to use
many different programs.
Contact Terrapin, Inc. for information regarding the
use of Logo graphics with other software packages.
Technical Tip memos are available that describe how to
use Logo graphics with The Print Shop™ program,
published by Broderbund, and the Newsroom™
program, published by Springboard.

Using an ImageWriter Printer

r^
Before you begin, check to see that the DIP switches on
the Image Writer printer are set to their standard default
values.

T e r r a p i n L o g o T u t o r i a l P - 3

Printing

Printer.
SW1: Switch 8 open
SW2: Switches 1-2 closed, switches 3-4 open

If you are using a Super Serial Card, make sure that
these are the settings of the DIP switches located there.

Super Serial Card:
SW1: OFF OFF OFF ON OFF ON ON
SW2: ON OFF OFF ON ON OFF OFF

The PRINTSCREEN Command
(Logo PLUS only)
If you are using Logo PLUS, you can print pictures
directly from Logo using the built-in PRINTSCREEN
command. (This command is not available in Terrapin ^^
Logo for the Apple. Use the PRINTPICT and)
LARGEPICT programs described below instead.)

Before typing the command, make sure that the printer
is on, set to the online or select position and that paper is
ready.

PRINTSCREEN takes two numbers as inputs. The first
number indicates the slot to which your printer is
attached to your computer. (Apple //c owners should
always specify 1.) The second number indicates the size
of the picture. An input of 1 gives a standard size
picture; an input of 2 prints a double-size picture.

For example, if your printer is connected to slot 1 inside
your computer and you want to print a double-size
picture, you would type
P R I N T S C R E E N 1 2 ^ \

P - 4 T e r r a p i n L o g o T u t o r i a l

Printing
F'--«^:v«v"7^'

If you want to print an inverse or color picture, or if
you are using a printer other than an ImageWriter, you
must use the printing programs from the Utilities Disk,
described in the rest of this chapter.

PRINTPICT and LARGBPICT:
Printing Black-and-white Graphics

PRINTPICT uses the file DUMP.OB J and prints a small-
size picture (3.5 x 2.5 inches).

LARGEPICT uses the file LARGE.OBJ and prints a
picture that is twice as large in each direction (about 7 x
5 inches).

Read in the file you want (either PRINTPICT or
(^ LARGEPICT). The appropriate .OBJ file will beloaded automatically. If you are using 64K of memory,

you will want to read in this file before you begin
working on a picture. Unless you first save it, your
picture will be destroyed if you read this file after
creating your design.
Now you can print the graphics screen whenever you
want. It makes no difference whether the pictures are
drawn from scratch or read in from disk.

To print the graphics screen, type PRINTPICT
followed by two inputs: the slot number for your
printer and a print option number.
Slot number - Most printers are connected to slot 1
inside the computer. Apple lie users should always
specify slot 1. Apple IIGS users should specify slot 1 if

/^ the printer port is being used. Set the SLOT 1 option to
PRINTER PORT at the Control Panel. If a printer card

T e r r a p i n L o g o T u t o r i a l P - 5

Printing

is used and is in slot 1, set the SLOT 1 option to YOUR
CARD instead.

Option number - With a print option value of 0, white
or colored dots will be printed. With a print option
value of 1, the picture's negative will be printed.

A typical command for regular printing with an Image-
Writer connected in slot 1 is:

PRINTPICT 1 0

^

^ ■ • • h

Note: If you have read in the LARGEPICT file,
you can type either the PRINTPICT or
LARGEPICT command to print a double-sized
picture; the result is identical, no matter which ^^^
instruction you use. The reason for having two 'j
ways of issuing the same command is to
accommodate both those who are used to typing
PRINTPICT to print a picture and those who want
to type a procedure name that reflects the name of
the file they are using. In the PRINTPICT file, the
only available command is PRINTPICT, which
prints a single-sized picture.

A Few Hints:

For most drawings, the inverse option will wear out the
printer ribbon more quickly.

Small-size printing is 3 to 4 times faster than double-
size and much easier on the printer ribbon. (Also, the
resulting hardcopy occupies less space on the
r e f r i g e r a t o r d o o r .) ^ " ^

P - 6 T e r r a p i n L o g o T u t o r i a l

Printing

Beware! If you are running Logo with only 64K of
memory, reading a Logo file (such as a picture-printing
file) erases the graphics screen. Unless you have a 128K
machine, read PRINTPICT or LARGEPICT before
creating or reading in a picture.

SMALLCOLOR and LARGECOLOR:
Printing Color Graphics
SMALLCOLOR uses the file IRIS.BIN and prints a
small-size picture (3.5 x 2.5 inches).

LARGECOLOR uses the file CHROMA.BIN and prints
a picture twice as large in each direction (about 7x5
inches).

(^^ These files permit you to print full color Logo graphics.You will need an Image Writer II printer with a color
ribbon and an Apple computer with 128K. It makes no
difference whether the printer file is loaded before or
after the screen picture is drawn.

Each printer file contains a procedure with the same
name as the file. To print the graphics screen, first load
the file you want, then type either SMALLCOLOR or
LARGECOLOR followed by two inputs: the slot
number for your printer and a print option number.

Slot number - See the discussion of slots in the previous
section concerning black-and-white printing.

Option number - A print option value of 0 will cause
white or colored dots on the screen to be printed (white
dots appearing as black). A print option value of 1 will

/•s cause all but the white dots on the screen to be printed.

T e r r a p i n L o g o T u t o r i a l P - 7

Printing

A typical command for regular printing on an
ImageWriter II in slot 1 is:

SMALLCOLOR 1 0 or LARGECOLOR 1 0

The SMALLCOLOR and LARGECOLOR files need to
be read in only one time (unless, of course, the
procedures are erased with a GOODBYE or similar
command). After you have read in the file you want,
you can print pictures at any time using the appropriate
SMALLCOLOR or LARGECOLOR command.

These printing routines are not recommended for use
with a black ribbon. Satisfactory black-and-white
results may be achieved on the ImageWriter II using the
PRINTPICT utilities described above. Likewise,
pictures printed using a black ribbon (whether or not ^"%
they contain colored dots on the screen) will be
produced much more quickly using PRINTPICT.

Read the hints in the preceding section for additional
helpful information.

Other ImageWriter Printing Tips

A letter R printed with graphics:

If you are using an Apple lie, you may find that a letter
R is printed at the bottom of the picture. To prevent
this, add a semi-colon to the beginning of the line

(PRINT1 CHAR 9 CHAR 82 CHAR 13)

at the end of the PRINTPICT, SMALLCOLOR, or
LARGECOLOR procedure.

P _ 8 T e r r a p i n L o g o T u t o r i a l

Printing

/^^\

With the semi-colon added, the line should look like
this:

; (PRINT1 CHAR 9 CHAR 82 CHAR 13)

The semi-colon is a signal to Logo to ignore the rest of
the line. You could also delete the line, but commenting
it out with a semi-colon allows you to get the line back
again by just removing the semi-colon mark. Do not
change this line if you are using a machine other than
the Apple lie.

Long lines of text that are overprinted:
If your Logo procedures contain very long instruction
lines (over 80 characters), the ImageWriter will print
the second line on top of the first. In order to print lines

/^•n that are legible, you must enter a special command to
prepare the printer. (To cancel the commands given
below, simply turn the printer off and then on again.)

If you are using a Super Serial Card, enter the following
instructions at the Logo ? prompt sign:

OUTDEV 1
(PRINT1 CHAR 9 MC CHAR 13)
OUTDEV 0

If you are connecting your ImageWriter to an Apple
IIGS using the Printer Port, enter the following
instructions at the Logo ? prompt sign:

OUTDEV 1
(PRINT1 CHAR 27 CHAR 68 CHAR 32 CHAR 0

CHAR 13)
OUTDEV 0

T e r r a p i n L o g o T u t o r i a l p - 9

Printing

Change the value of "Add LF after CR" to NO at the
Printer Port option of the Control Panel to prevent
short lines in your procedures from being double-
spaced.

SCRIBE: Using a Scribe Printer '

The PRINTPICT files described above will work for
the Scribe as well as the ImageWriter. To begin, make
sure that all DIP switches on the Scribe are set to the UP
position. This is the factory default setting.

To print using the Scribe's black ribbon, read in either
of the printer files PRINTPICT or LARGEPICT.
Follow the instructions above to print the graphics
screen using the PRINTPICT procedure.

For a single-color picture using the Scribe' s color)
ribbon, you can use the procedures RED, YELLOW,
and BLUE in the file named SCRIBE. First read the file
by typing READ "SCRIBE, then run the desired
procedure just before printing the picture. A typical
command to print a red picture with a Scribe printer in
slot 1 would be:

RED PRINTPICT 1 0

If no color is specified, a yellow picture will be printed.
Color commands will be ignored when a black ribbon is
installed. Do not use the ImageWriter color printing
files SMALLCOLOR and LARGECOLOR. They were
not designed for the Scribe printer.

/"^^ • " v

P - 1 0 T e r r a p i n L o g o T u t o r i a l

Printing
L

Printing to a Parallel Printer

To print graphics using a parallel printer, you need a
graphics interface card. The SCREENDUMP program
(see below) supports the Grappler™ interface card. If
you have a different interface card, refer to your
interface card manual, which will provide instructions
for printing graphics. Then modify the SCREEN-
DUMP program with the appropriate control codes for
your particular setup (type HELP after loading
SCREENDUMP for assistance).

SCREENDUMP:
Using a Grappler™ Interface Card

The procedure SCREENDUMP in this file can be used
with a Grappler card (from Orange Micro, Inc.) to

(^ print Logo screen pictures. To use it, read in the file,
draw (or read in) the desired picture, and type
SCREENDUMP. (Remember that reading in a file
erases the graphics screen if you are using only 64K of
memory. So, unless you are reading in a picture that
you have previously saved, make sure that you load the
SCREENDUMP file before drawing your picture.)

After reading in the SCREENDUMP program, you
may want to type
HELP

for complete instructions as well as help in modifying
the SCREENDUMP procedure for use with other
interface cards.

When printing Logo graphics with this card, there are
several optional codes that can be included in the printer
command to alter the printout. The basic graphics

T e r r a p i n L o g o T u t o r i a l P - l 1

Printing
i

printing command for use with a Grappler card
connected to slot 1 is:
OUTDEV 1
(PRINT1 CHAR 9 MG CHAR 13)
OUTDEV 0

The letter G in this command stands for graphics.
Other optional codes include:

"GD to print a double-size picture
"GR to rotate the picture 90°, placing it sideways on the
screen
"GI to print the inverse or negative of the picture

The optional code letters D, R, and I can be added to the
"G code in any order. For example, a command to print
a double-size, rotated graphics design would be:
OUTDEV 1
(PRINT1 CHAR 9 MGRD CHAR 13)
OUTDEV 0

Those with Epson printers must include the letter R
whenever a double-size command is given in order for
the picture to be centered on the page.

SWEET-P: Plotter Procedures

The procedures in this file make it easy to create Logo
graphics on the Sweet-P Personal Plotter (from Enter
Computer).

To start, read in the file SWEET-P and type

SETUP

/*̂ ^̂ \

/"̂ ^̂ \

/ • " " ^ ^ ^ K

P - 1 2 T e r r a p i n L o g o T u t o r i a l

^m>\
I7-3%*

Printing

The names of most procedures resemble their Logo
screen graphics equivalents; for example, PFD moves
the plotter pen forward, PPU does a plotter PENUP,
and so on. For a listing of commands, type

HELP

The procedure POLYSPI is given as an example of a
plotter superprocedure. Its only difference from pro
cedures you've already seen is that it uses PFD and PRT
instead of FD and RT.

The Sweet-P has the ability to print text as well as
graphics. The following procedures make it easy to
vary the size and direction of text printing.

PRINTTEXT Takes an input (either a word or list)
and prints it on the plotter.

TEXTSIZE Controls the magnification of text size.
The input range is 1 to 255, although
values much larger than 90 will create
characters too big for a regular sheet
of paper. Default value is 1.

TEXTORIENT Sets the direction for text printing. The
possible inputs are 0,90,180, and 270.
Default is 0.

The procedure CHANGEPEN is provided so you can
tell a procedure to pause for manual pencolor change.

You can also vary the magnification of graphics figures.
To do so, change the global variable EXPANSION by
typing, for example

T e r r a p i n L o g o T u t o r i a l • p . 1 3

Printing

MAKE "EXPANSION 7.6

A value of 7.6 will give the plotter page the same turtle-
step dimensions as the graphics screen. (This means that
the default value, 3, allows more turtle steps in all
directions than is possible on the monitor.)

RSPLOTTER: Procedures for the
Radio Shack Plotter

The procedures in this file allow you to control the
Radio Shack four-color plotter (model CGP-115) from
Logo. (Although this plotter is no longer produced,
Terrapin provides this file for current owners of the
product.)

As with the SWEET-P procedures, most procedure ^"^
names resemble their Logo screen graphics equivalents.
A few differences should be noted, however. You do
not have to change pens manually on the Radio Shack
plotter. Instead, the procedure PPC is provided.

In addition, the procedure NEWPAGE allows you to
feed clean paper from the roll into the plotter.

Finally, the Radio Shack plotter can print text as well as
graphics, but must first be put into the appropriate text
or graphics mode. The procedures TXTMODE and
GRMODE permit you to switch back and forth with
ease.

~ \

p _ 1 4 T e r r a p i n L o g o T u t o r i a l

—_ ̂ \ iU
About the Utilities Programs
The Utilities Disk contains many sample programs,
useful tools and demonstrations. Using these programs,
you will be able to make Logo music, introduce young
children to Logo in an easy way, play games written in
Logo, print to a variety of printers and plotters, or
explore assembly language programming with Logo.

Before you begin, make a copy of your Utilities Disk,
because it is possible to damage it or erase it acciden
tally. Put the original away in a safe place. Refer to the
first chapter, Beginning in Logo, for complete
instructions for making a backup copy.

All procedures in the files on the Utilities Disk may be
/•s considered to be examples or learning models. You are
(encouraged to analyze their ideas and use their construc

tions. Note particularly the brevity of Logo procedures
(small programs), the constant use of subprocedures,
and the use of procedure names that describe the
procedure explicitly.

In addition to serving as models, the procedures in the
files on the Utilities Disk fill a variety of roles.

The Logo PLUS Utilities Disk

The Logo PLUS Utilities Disk contains a somewhat
different set of programs from those described here. A
few of the programs are not present on the Logo PLUS
Utilities Disk because they are not needed; their
functions are identical to commands that are built into
Logo PLUS. For example, the built-in shape editor of

^^ Logo PLUS replaces the need for the shape edit utility(p r o g r a m .

T e r r a p i n L o g o T u t o r i a l U - l

Utilities

Additional programs have been added to the Logo
PLUS Utilities Disk because they relate to or demon
strate the enhanced features of the Logo PLUS
language. These added files contain character fonts,
sample shapes files and interesting project ideas. Files
that are not present on the Logo PLUS Utilities Disk are
marked here with a +, and additional files are described
in the separate Getting Acquainted with Logo PLUS
booklet.

To Use the Utilities Disk Files
1. Start Logo using the Language Disk, then remove the

Language Disk from the disk drive and put it away.
2. Insert your backup copy of the Utilities Disk into the

disk drive.

3. To list the files on the disk, type CATALOG. You
will see the first part of the listing; press the space bar
to see the remainder. If you type CATALOG while
Logo turtle graphics are on the screen, you will only
see four lines of text at the bottom of the screen.
Press the space bar to complete the listing, if neces
sary, then press <CTRL> T to see the full text screen.
Return to the graphics screen using <CTRL> S.

4. To read a file from the disk, after the ? prompt, type
READ "(filename without .LOGO extension)

Example:
?READ "TEACH (only one quote, please)

Logo will read the file, confirming the presence of
each procedure as it reads it in by printing its name
and the word DEFINED. Example:

~ i

^

U - 2 T e r r a p i n L o g o T u t o r i a l

&^*>v

x ^ m \

Utilities

?READ "TEACH
TEACH1 DEFINED
TEACH DEFINED

Some programs are self-starting; that is, they begin
running by themselves once you read the file. Other
programs do not automatically begin and require you to
type the name of the initial procedure. The initial
procedure for most of the demonstration programs on
the Utilities disk is the same as the name of the file. For
utility programs that need to be initialized, the proce
dure is usually called SETUP. If Logo prints the ?
prompt when it finishes reading the file, you must start
the program yourself. The descriptions of the programs
below explain how to start each one.

You may want to place one or more of the Utility
programs on your own data disk in order to incorporate
them into programs you have written. Several of the
programs, such as the ImageWriter printing programs
and the MUSIC program, require some machine
language code to run and these programs automatically
load the correct binary file from the disk. This binary
file must be on the same disk as the Logo program that
uses it. Use the system disk that came with your
computer to copy a binary file to another disk. The
summary below indicates the Logo programs that use
binary files. (Keep in mind that these utility programsare copyrighted and may not be given away.)

T e r r a p i n L o g o T u t o r i a l U - 3

~)

Utilities

Summaiy of Utilities Disk Files
+ The programs marked with a + sign are not

contained on the Utilities Disk for Logo PLUS.
Refer to the Getting Acquainted with Logo PLUS
booklet for complete information about Logo
PLUS Utilities programs.

Printing Utilities:

Refer to the Printing chapter for complete
instructions for printing text and graphics using Logo.

PRINTPICT Utility for printing small-sized
graphics using the ImageWriter
printer. (Uses the DUMP.OBJ file.)

LARGEPICT Utility for printing large-sized
graphics using the ImageWriter
printer. (Uses the LARGE.OBJ file.)

SMALLCOLOR Utility for printing small-sized
graphics in color using the
ImageWriter II printer. (Uses the
IRIS.BINfile.)

LARGECOLOR Utility for printing large-sized
graphics in color using the
ImageWriter II printer. (Uses the
CHROMA.BIN file.)

SCRIBE Utility for printing color pictures on
the Scribe printer. See also the
PRINTPICT and LARGEPICT
utilities, which can be used with the
S c r i b e p r i n t e r . ^ " " N

U _ 4 T e r r a p i n L o g o T u t o r i a l

Utilities
ktftgfe^M. fi'.r*''

SCREENDUMP Utility for printing graphics to
parallel printers using the Grappler11
and other interface cards.

SWEET-P

RSPLOTTER

Procedures for controlling the
Sweet-P Personal Plotter.
Procedures for controlling the Radio
Shack 4-Color Plotter.

Aids to Using Logo:
INSTANT

TMOVE

TEACH

System of single letter Logo com
mands which makes Logo graphics
available to non-readers, among
others. INSTANT and its use are also
described in the Graphics chapter.

Procedure for moving the turtle using
arrow keys.

System of writing Logo procedures
without using the editor.

/ ^ ^ N

Music System Files:
MUSIC

MUSIC.SRC

TWINKLE

Procedures for creating music using
notes of specified pitch and duration.
See the Music chapter for a complete
description and tutorial. (Uses the
MUSIC.BIN file.)
Assembler language and Logo
procedure MCODES.
Procedures to play "Twinkle,
Twinkle, Little Star."

Terrapin Logo Tutorial U-5

Utilities

The music system is an example of Logo/assembly
language interfacing, explained in the Technical
section of this tutorial.

Shape Editing Programs:

Instructions for creating your own turtle shape are
described later in this chapter. See the Technical chapter
for a detailed discussion of this program.

Owners of Logo PLUS should refer to the Getting
Acquainted with Logo PLUS booklet for instructions on
using the built-in shape editor in that version.

SHAPE.EDIT System for changing the shape of the
+ graphics turtle, a useful feature for

g a m e s a n d a n i m a t i o n . ^ " " N
ROCKET, ROCKET.AUX, ROCKET.SHAPES,
+ A demonstration of how to use a turtle

with a different shape. The shape was
created using the SHAPE.EDIT
utilities program.

Demonstration Programs:

ANIMAL Game that adds your information
about animals to its knowledge base.
(An interesting discussion of the
structure and procedures of this
program can be found in the section
on advanced use of lists in Logo for
the Apple II. by Harold Abelson,
professor of mathematics at M.I.T.)

U - 6 T e r r a p i n L o g o T u t o r i a l

Utilities

ANIMAL.INSPECTOR
Procedures for examining the
ANIMAL knowledge base.

DYNATRACK

ESfSPLPICT

TET

Game using principles of physics to
simulate a ride around a frictionless
race track.

Example of a design created with
Logo. The procedure that created this
picture is listed later in this chapter.
Example of a simple recursive proce
dure which draws a complex design.

/ml^^ \

Useful Tools:

ARCS

BEFORE

CURSOR

PICK

PPRINT

STRING

Collection of procedures for drawing
arcs with variable radii. Another
procedure for drawing an arc is
developed in the Procedures section
of the Appendix.

Procedures for determining which of
two words comes first alphabetically.

Collection of procedures for output
ting the cursor's position.

Randomly selects a letter from a word
or a word from a list.

Procedures to wrap words in long
lines of text around the screen rather
than be split in the middle.

Procedures for manipulating
segments of words.

Terrapin Logo Tutorial U-7

Utilities

WAIT + Procedure for causing a timed delay.

File Handling Utilities:
BIN.TO.TEXT File that will allow you to convert
+ your Terrapin Logo for the Apple

files from binary files into text files
for use with word processors and
modems.

FID File utility program for deleting,
renaming, locking, and unlocking
files.

TEXTEDIT Procedures for using the Logo system
+ a s a t e x t e d i t o r .
DPRINT Collection of procedures for printing
+ t e x t t o a d i s k fi l e . ~ >

Logo Files for Logo/Assembler Interfacing:
ADDRESSES

AMODES

File of names describing addresses in
the Logo interpreter for the
assembler.
File of names describing the 6502
addressing modes.

ASSEMBLER Logo assembler procedures.
OPCODES File of names describing the 6502

mnemonics for the assembler.

The Technical chapter describes Logo/Assembler
interfacing in detail.

U-8 Terrapin Logo Tutorial

S*m^

Utilities

/ ^ ^ N

Explanation of Utilities Disk Files
Many of the following program descriptions include
sample procedures that you can try. Please note that if
the second line of an instruction is indented, you should
not press <RETURN> at the end of the first line.

PRINTING UTILITIES

Please refer to the Printing chapter for instructions on
using the following programs that are provided on the
Utilities disk. Note that Logo PLUS includes a built-in
command to print graphics to an ImageWriter printer.

AIDS TO USING LOGO

INSTANT: Single Letter Logo Commands

This collection of procedures makes the Logo system
easy to use even for very young children. After you
READ "INSTANT, you can use single-character
commands to manipulate the turtle and define
procedures. Each keystroke is acted upon immediately.
Typing F, for example, makes the turtle move forward
a small amount, leaving a trail. R makes it turn to the
right. Repeating a sequence of F's and R's will draw a
square.

The INSTANT system allows you to store the
commands you have typed as a procedure. When you
type N, it will define a procedure to draw the picture
currently on the screen. For example, if you draw a
square using R and F, and name the result SQUARE

^■n (using the N command), the INSTANT program willdefine a procedure SQUARE with FORWARD and

T e r r a p i n L o g o T u t o r i a l U - 9

Utilities

RIGHT commands in it. If you press P, the program
will ask you the name of a procedure to run (picture to
show), and run that procedure. Here is a table of
INSTANT commands:

/ ^ ^ ^ f c v

? Helpb Clears the screen
F Go forward
L Turn left
N Names a new picture
P Asks for the name of a picture to show
R Turn right
U Undo the last command

If you need to start the program again from the Logo ?
prompt sign, type INSTANT, the name of the main
p r o c e d u r e f o r t h i s p r o g r a m . ^ k

The INSTANT program is an example of how easy it is
to create "languages" with simple Logo programs. It
also serves as an example of Logo programming style,
and of the use of RUN and DEFINE. You can easily
modify INSTANT to provide more complex
commands.

For a coniplete discussion.of this program, see the
INSTANT section of the Graphics chapter in this
tutorial.

TMOVE: Another Waj to Move the Turtle

The program TMOVE allows the user to move the
turtle using the four arrow keys. TMOVE is similar to
INSTANT in that it looks for a single keystroke and
causes an action based on the key that is pressed. Unlike ̂ ^
INSTANT, however, it does not keep track of the keys

U - 1 0 T e r r a p i n L o g o T u t o r i a l

Utilities

that have been pressed, nor does the turtle draw when it
moves, although it could be modified to do so.
The six keys that can be used are the four arrow keys,
the H key to return the turtle to its Home position, and
the <ESC> key to end the program.

The distance (number of screen dots) that the turtle
moves with each keystroke is currently set to five by the
instruction MAKE "DISTANCE 5 in TMOVE. This
number can be changed to cause the turtle to move a
larger or smaller distance.
TMOVE may help younger children and those with
special needs to more easily position the turtle on the
screen before drawing a design.

TEACH: How to Write Logo Procedures
Without Using the Editor

TEACH is used to define procedures whenever you
want to avoid the complexities introduced by using the
editor. It has the additional advantage of prompting the
user for information The instructions developed in the
immediate mode are copied into a procedure using
TEACH.

To use this program, type READ "TEACH to load it
and type TEACH to begin.

Consider this procedure, which will draw a variable-
sized square.

TO SQUARE :SIZE
REPEAT 4 [FD :SIZE RT 90]

f " E N D

T e r r a p i n L o g o T u t o r i a l U - l 1

Utilities

~)
The following dialog shows how to define the same
procedure using TEACH. Type what appears in the
computer font, as you are prompted. What TEACH
prints is in italics. If there are no variable inputs to the
procedure, press <RETURN> at the second prompt.
7 T E A C H p r e s s < R E T U R N >
NAME OF PROCEDURE> SQUARE press <return>
I N P U T S (I F A N Y) ? : S I Z E p r e s s < r e t u r n >
>REPEAT 4 [FD :SIZE RT 90] press <return>
> E N D p r e s s < R E T U R N >
SQUARE DEFINED

To run SQUARE, type

SQUARE 50

The graphics screen is not cleared when TEACH is
used, as it sometimes is when the editor is used. (The
64K version of Logo clears the graphics screen when
returning from the editor; the 128K version leaves it
intact.) In graphics mode, TEXTSCREEN (<CTRL>
T) will show the previous typing, which might be
hidden by the picture. SPLITSCREEN (<CTRL> S)
will return the picture and four lines of text.

Remember that reading a file from the disk clears the
screen if your computer has only 64K of memory.
Before beginning to type any instructions that you
might want to copy into a procedure using TEACH, you
may want to read TEACH in from the disk.
The TEACH system uses the two procedures described
below—TEACH and TEACH1.

TEACH asks for and receives the name of the procedure

U - 1 2 T e r r a p i n L o g o T u t o r i a l

~)

S ^ * \

Utilities

and any inputs, then passes the information on to
TEACH1.

TEACH 1, a recursive procedure, receives the lines of
the procedure (after the prompt >), testing each for
END. When END is received, TEACH1 completes the
defining of the procedure, and passes control back to
TEACH, which announces the procedure defined.

MUSIC SYSTEM FILES

MUSIC:
9 Write and Run Logo Music Procedures

To run the music programs, type READ "MUSIC. For
a short demonstration, type FRERE to hear the "Frere
Jacques" melody. For more information about using
the music-making tools, see the Music chapter of this
tutorial. Logo PLUS contains its own primitive NOTE
for playing a single note. However, Logo PLUS users
can use these music tools as well.

TWINKLE:
A Sample Melody

To use this program, first read in the file MUSIC, as
described above. Then read the TWINKLE file and
type STAR to hear the song.

MUSIC SRC f MUSIC MN:
An Example of Logo/Assembler Interfacing

MUSIC.SRC is a Logo file, which contains the assembly
language program for playing notes. MUSIC.BIN is a
binary file that is automatically loaded by the MUSIC

T e r r a p i n L o g o T u t o r i a l U - 1 3

Utilities

file. MUSIC.BIN must be present on any disk that uses
the MUSIC tools. If you copy MUSIC.LOGO to
another disk to use with Logo programs you have
written, you must also copy the MUSIC.BIN file using
your computer's system disk. The Technical chapter
contains more detailed information on the Logo music
system.

SHAPE EDITING PROGRAMS

SHAPE £DIT: How to Change the Shape
of the Turtle (Terrapin Logo only)

Although Logo is not designed for animation, it is
possible to change to shape of the turtle in order to
simulate animation effects. Ordinarily, the best screen /jtmm^^
motion that you can obtain is by moving the turtle. If j
you want to make a circle move across the screen, it will
be very slow to repeatedly draw and erase the circle,
moving the position of the circle little by little.
However, if you change the shape of the turtle itself, so
that the turtle looks like a circle, then you can make the
circle move across the screen by simply moving the
turtle.

The following instructions will help you use the shape
editor that is on the Terrapin Logo for the Apple
Utilities Disk. A more technical discussion of shape
editing can be found in the Technical chapter.

Note that Logo PLUS includes a built-in shape editor
with more features and capabilities.

The Logo Shape Editor

The turtle shape was designed by building a shape table.
/ " • ^ ^ h y

j j _ ! 4 T e r r a p i n L o g o T u t o r i a l

Utilities

Other shapes can be created by constructing other shape
tables. However, constructing shape tables is a tedious
process and requires some technical knowledge.
One of the programs contained on the Utilities Disk is a
shape editor. This shape editor, written in Logo, allows
you to design a shape by drawing it directly on the
screen, and also includes functions for changing the
currently displayed turtle shape and its size. The
program then automatically assembles the shape into a
shape table that you can use easily.

Creating a Shape

When defining a new shape, always start with a fresh
Logo workspace with no procedures defined.

(^ To read in the shape editor, type
READ "SHAPE.EDIT

The SHAPE.EDIT file contains many procedures that
allow you to create and use new shapes for the turtle.
One of these procedures is called MAKESHAPE, which
allows you to define or create new shapes.

To begin designing your own shape, enter a
MAKESHAPE command, which takes one input—the
name of the shape you will design. For example:
MAKESHAPE "BOX

When you press <RETURN> after this instruction, you
will enter the shape editor, a blank graphics screen, with
a message reminding you of the shape you are defining.

f^^ In general, you will use the arrow keys to move aroundthe screen, lighting dots to create a pattern for a new

T e r r a p i n L o g o T u t o r i a l U - 1 5

Utilities

~ i
turtle shape. Use the following commands (similar to
those of the editor) to construct shapes.

U
D
arrow keys

<CTRL>P

<CTRL>N

<CTRL>C

<CTRL>G

<DELETE>
or<ESC>

1...9

Penup
Pendown
Move in the direction of the arrow and
draw a line if the pen is down.
Move up and draw a vertical line if the
pen is down. (Equivalent to up arrow.)
Move down and draw a vertical line if
the pen is down. (Equivalent to down
arrow.)
Exit the shape editor and define the
shape. A message that says your shape is
done will appear. Your turtle will be set
to the new shape.
Exit without permanently defining the
shape. Use this command to cancel the
definition of a shape if you wish to start
over. (You can set the turtle to the shape
as defined so far, but the next time you
define a new shape, this one will be lost.)
Delete the previous few commands.
Because the previous byte in the shape
table is deleted, one, two or three dots
may be erased.
Change the size of the shape. Typing 3 is
equivalent to entering SIZE 3 outside theeditor after the shape is defined. It may
be helpful to switch between the size you
want and a larger size, which is easier to
see, while designing a shape.

/ " ^ ^ ^ K

^

U-16 Terrapin Logo Tutorial

/ ^ s

Utilities

When creating the new shape, be sure to pick up the pen
before backing up over a line that has already been
drawn, otherwise it will be erased. Since these lines are
being drawn usingpen color 6, lines that are traced overwill be erased and lines will be drawn where none exist.

Once you've defined a turtle shape (BOX, in this
example), the turtle will assume this shape when you
exit the shape editor. You can use SETSHAPE to
change the turtle back to its original shape or to any
other shape you have defined. The SETSHAPE
procedure takes one input (the shape name) and changes
the turtle to that shape.

You can restore the turtle to its original triangular
shape, by typing

(~ ^ S E T S H A P E 0

Then change it back to its new shape by typing

SETSHAPE :BOX

At any time you can change the size in which shapes are
shown by using the SIZE procedure. SIZE 1 is the
standard size. Type SIZE followed by a number from 1
to 9 to change the size of the turtle shape.

Perhaps you want to set the turtle's shape at random
from die set of available shapes. You can do this by first
making a list of shape names, including zero for the
turtle shape itself. For example, type
MAKE "SHAPES [0 ROCKET BOX]

/^ You will have to create a special variable if you want to
use the turtle shape 0 by typing

T e r r a p i n L o g o T u t o r i a l U - 1 7

Utilities

MAKE "0 0 (both these characters are zero)

Now enter these two procedures:

TO PICK.SHAPE
SETSHAPE THING (WORD PICK :LIST)

END

TO PICK :LIST
OUTPUT ITEM 1 + RANDOM COUNT :LIST :LIST

END

Now you can type PICK.SHAPE to set the turtle's shape
at random.

Typing another MAKESHAPE command will cause a
new shape to be defined. You cannot edit previously
defined shapes. If you wish to erase all shapes and start ^""^
over, type SETUP.

Stamping Shapes

The SHAPE.EDIT file contains procedures for
stamping the image of the current turtle shape onto the
screen. The STAMP procedure gets the current shape
from the SS procedure and stamps it on the screen at the
current location.

When you use STAMP to stamp the image of the turtle,
you will at first see neither the stamped turtle nor the
currently active turtle. However, they are both actually
there, but hidden; they cancel each other out while at the
same position.

This unexpected event occurs because Logo uses pen
color 6 (the reverse pen color) to draw and erase the ^^
turtle. Remember that when you give an instruction to

U - 1 8 T e r r a p i n L o g o T u t o r i a l

Utilities

f

draw a line with pen color 6, the turtle will erase a line
that is already there and draw a line if none is present.
The same phenomenon is occurring here. The turtle
shape (in pen color 6) is covering an identical turtle
shape that has already been stamped on the screen.
These images temporarily cancel each other out, and
you see nothing on the screen. As soon as you give a
command to move the turtle, however, you will see both
the stamped turtle and the active turtle.

The following procedure, STAMPRANDOM, uses the
STAMP procedure to stamp the current shape at
random places on the screen.
TO STAMPRANDOM

STAMP PU
SETXY (120 - RANDOM 240)(110 - RANDOM 220)

(P D S T A M P R A N D O MEND

Saving Shapes

To save on disk all the shapes you have defined, use the
S AVESHAPES command, written as a Logo procedure.
It takes the name of the file as input. Be sure to use a
quote, just as you would using the SAVE command.
For example, type
SAVESHAPES "BOX

The SAVESHAPES procedure creates two files on the
disk. For example, SAVESHAPES "BOX will create
BOX.SHAPESandBOX.AUX.LOGO. The file
BOX.SHAPES contains the computer's internal shape
table (the actual appearance of the shape). The file

^^ BOX. AUX.LOGO contains the names of the shapes
and the following procedures: SETSHAPE, .SHAPE,

T e r r a p i n L o g o T u t o r i a l U - 1 9

Utilities

SIZE, INITSHAPES, plus any procedures you have
defined. Unless you are writing assembler procedures
for manipulating the shapes themselves, you probably
don't want to include any extra procedures in this file.

The shapes file that ends with ".AUX" contains a
procedure called INITSHAPES, which automatically
loads the proper ".SHAPES" file that sets up the defined
shapes. To use the shapes you saved in a file called BOX,
therefore, you would need to enter these instructions:
READ "BOX.AUX
INITSHAPES

You could also write a procedure that takes any
filename as input and loads and initializes the shapes to
be ready for use. Such a procedure might look like this:
TO USE.SHAPES FILENAME

READ WORD FILENAME ".AUX
INITSHAPES

END

Running this procedure with an instruction like
USE.SHAPES "BOX, will load the correct file and
define the shapes that are stored in it.

For greater flexibility, you should keep the procedures
you write to actually use the shapes in a separate file
from the shapes themselves. This means that you should
not define procedures to use shapes while you're still
using the shape editor. Instead, after defining your
shapes, you should save them and clear your workspace
by typing GOODBYE.
If you accidentally do save your procedures in with the
shapes you created, you can edit the resulting ".AUX"
file and separate the procedures into two different

U - 2 0 T e r r a p i n L o g o T u t o r i a l

/ ^ ^ ^ ^ K

/ " ^ ^ ^ t \

Utilities

files—one containing SETSHAPE, .SHAPE, SIZE and
INITSHAPES, and the other containing procedures you
have written to use the shapes.

A Sample Session

7GOODBYE
7READ "SHAPE.EDIT
7MAKESHAPE "BLOCK
Define a shape here
7MAKESHAPE "TIRE
Define another shape here7SAVESHAPES "BLOCKS

At this point, Logo will ask you to place your data disk
in the disk drive. This disk should be the one on which
you want to store the shapes files and the programs that

f^ will use them. After Logo saves the shapes, it will ask
you to put the disk containing the shape editor back into
the drive. You should then place the Utilities Disk (or a
copy of it) into the drive and press <RETURN>. Logo
will pause for a while as it reads the shape editor back
into memory.

There should now be two new files on the files disk that
you used: BLOCKS.AUX.LOGO and
BLOCKS.SHAPES. Type GOODBYE to erase
everything in the workspace so you can start fresh. To
retrieve the shapes you created, place the disk on which
you saved your shapes in the drive and type
READ "BLOCKS.AUX
INITSHAPES
SETSHAPE :BLOCK

You now have two options. The first may seem more
f^^ convenient to you. The second, however, will give you

more flexibility in the long run.

T e r r a p i n L o g o T u t o r i a l U - 2 1

^■■^

Utilities

1. You could write procedures to use these shapes and
then save everything. That way, all you have to do to
read in (and use) the shapes is to type INITSHAPES.
The disadvantage to this method is that it is more
difficult to use these same shapes in a different
program.

2. The alternative is to start with a fresh workspace by
typing GOODBYE, write the procedures that use the
shapes, and include the READ and INITSHAPES
commands in the procedures so the shapes are read in
when the program starts running. When testing the
program, it will bring the shapes into the procedures
workspace. Therefore, when you are satisfied, you
can use ERASE to erase the following: NAMES,
SETSHAPE, .SHAPE, and INITSHAPES. (Don't
erase any variable names that are required by the ^^
procedures you have written.) Then save the file.)
This gives you the ability to use the same shapes more
easily in different programs.

The following section briefly describes a program that
uses the second technique of separating the files.

ROCKET, ROCKET AUX f ROCKETSHAPES:
Example of User-Defined Turtle Shapes
(Terrapin Logo Only)

On the Terrapin Logo Utilities Disk is a demonstration
program called ROCKET. Type READ "ROCKET and
then ROCKET to begin the demonstration. The moving
rocket is the turtle, defined using SHAPE.EDIT as
described in the section above.

The ROCKET procedure reads the ROCKET.AUX file
and calls the procedure INITSHAPES. The

U - 2 2 T e r r a p i n L o g o T u t o r i a l

~ \

r^
Utilities

INITSHAPES procedure automatically sets up the
shapes. After you run the procedure, type
SETSHAPE :ROCKET
DRAW

and try moving the rocket-turtle around. (See the
Graphics chapter.) Try changing its size using the
procedure SIZE that is provided. For example, type

SIZE 5

The rocket will move, no matter how large it is (SIZE 1
is the normal size). However, edited turtle shapes will
make only 90 degree turns, although the trail each
leaves behind will go in the proper direction.

Type PO ROCKET to see how the demo works. To run
it again without reloading the entire file, type SHOW.

DEMONSTRATION PROGRAMS

ANIMAL: A Game thai Teaches the
Computer About Animals

This program attempts to augment its knowledge about
the animal kingdom by playing a game in which it tries
to guess the animal you are thinking of. It asks various
questions, such as "Does it have wings?" You answer
with "Yes" or "No." If it doesn't guess correctly, it will
ask you for your animal's name and a question to
distinguish that animal from the animal it guessed. This
information it adds to its knowledge tree for the next
game.

T e r r a p i n L o g o T u t o r i a l U - 2 3

Utilities

^

To play, type

READ "ANIMAL

and then type ANIMAL to begin.

When you are finished playing, stop the program using
<CTRL> G. If you want to save what you have done,
type SAVE "ANIMAL; the next time you play, it will
know the animals you taught it. The animal game on the
Utilities Disk already knows several animals. To make it
start out fresh, after the Logo ? prompt sign type
_N_TIALIZE.KNOWLEDGE. Then type ANIMAL to
start the game from scratch.

The ANIMAL game is a good example of brief, single
purpose procedures. The main procedure ANIMAL ^_
prints the greeting, then uses GUESS with the stored)
:KNOWLEDGE. After a round of the game, it prints
another greeting, uses WAIT for a pause, then begins
again by calling itself, ANIMAL.

ANIMALINSPECTOR:
What's in the ANIMAL Knowledge Base?

The procedures in this file are for examining the
ANIMAL knowledge base. The procedure
INSPECT.KNOWLEDGE, which prints out the
ANIMAL program's "knowledge" about animals in an
easily readable form, is intended as a learning aid to be
used with the ANIMAL program described above. In its
use of recursion, it is similar to tree-drawing programs,
since it actually follows the tree of the ANIMAL
program's knowledge as it prints it out. Look at the
procedures in this file as an example of recursive ^*.
p r o g r a m m i n g . i

U - 2 4 T e r r a p i n L o g o T u t o r i a l

Utilities

The global variable KNOWLEDGE in the file
ANIMAL is the knowledge base examined. Therefore,
it is necessary to read in the file ANIMAL to use the
ANIMAL.INSPECTOR.

You can examine the ANIMAL knowledge base by
typing
INSPECT.KNOWLEDGE

Here is a brief desription of the ANIMAL.INSPECTOR
procedures:
INSPECT.KNOWLEDGE

Uses INSPECT1 with the stored KNOWLEDGE,
beginning at level 0.

ESfSPECTl KNOWLEDGE :LEVEL
Calls itself and IPRINT to inspect and print each
branch of the knowledge tree.

IPRINT

Creates a formatted display of the ANIMAL tree of
knowledge. Type <CTRL> W (hold down the
<CTRL> key and tap <W>) to stop the scrolling (to
read the tree). Press any key to resume scrolling.

DYNATRACK:
A Game: the Dynamic Turtle
On a Frictionless Surface

Steering without friction is a very different world, as
people riding on rocket power have discovered. Dyna-

f^^ track puts you on a rocket sled on a frictionless trackand gives you the power to do two things:

/^^\

T e r r a p i n L o g o T u t o r i a l U _ 2 5

Utilities

1. You can turn the sled, BUT it will keep moving in
the old direction, moving sideways.

2. You can give it a burst of rocket power. The force
will be applied in the direction in which it is
pointing, BUT, since it was already moving, the
resultant direction will be somewhere between the
original direction and the direction in which you
are pointing.

This is one of the trickiest games you will meet. It
requires strategy more than eye-hand coordination. The
object is to move around the track without touching the
lines.

Type READ "DYNATRACK and then follow the
directions to play. The program begins automatically.

The dynamic turtle keeps moving when you give it a
"kick." Type R to turn it right, L to turn it left, K to
kick it in the direction it is facing. If the turtle is moving
in another direction when you "kick" it, the direction of
movement will be changed. Each time you "kick" it, it
will accelerate and be harder to control.

The main procedure is called DYNATRACK. Type
DYNATRACK to begin the program again when you
see the Logo ? prompt sign.

INSPIPICT: Sample Logo Picture

To see the picture, type

READPICT "INSPI

This picture was generated by running the following
procedure four times with the turtle pointing at

~ \

U - 2 6 T e r r a p i n L o g o T u t o r i a l

/ ^^^N

> " ^ ^ K

Utilities

different angles, and with different pen colors:
TOINSPI DISTANCE :ANGLE INCREMENT

FD DISTANCE
RT :ANGLE
INSPI DISTANCE :ANGLE + -.INCREMENT

INCREMENT
END

Try using the instruction INSPI 8 0 13 to recreate this
picture.

TET:
A Graphics Procedure of Variable Complexity

TET is a good example of a recursive procedure. It
draws tetrahedra on the points of tetrahedra. The larg
est tetrahedron is of the size specified. On its points are
drawn half-size tetrahedra, on their points are drawn
quarter-size tetrahedra, and so on, to the depth
specified. A depth of 1 draws only the one large
tetrahedron. TET takes two inputs; the first sets the size
and the second sets the depth (or number of levels of
recursion). Try, for example, TET 50 3.

Spaces in the procedure listing below are to help isolate
the individual commands. They are not a necessary (or
usual) inclusion. The REPEAT statement must be typed
as one line (without a <RETURN> in it).

TO TET :SIZE :DEPTH
IF :DEPTH = 0 STOP
REPEAT 3 [LEG :SIZE

TET :SIZE * .5 :DEPTH -1
RT 150 FD :SIZE
RT 150 LEG :SIZE RT180]

END

T e r r a p i n L o g o T u t o r i a l U - 2 7

Utilities

~ i
TO LEG :SIZE

FD :SIZE/(2*COS30)
END

USEFUL TOOLS

ARCS:
Variable Radii Arc and Circle Procedures

To use the arc and circle procedures provided on the
Utilities Disk, type the procedure name followed by the
required number of inputs. Examples:
RARC 50 90 for a 90 degree (quarter circle) arc to

the right with a radius of 50.

RARC1 1 90 for a 90 degree (quarter circle) arc to)
the right with a radius of 360/(2 PI) or
about 57.2.

RCIRCLE 30 for a circle to the right with a radius of
30.

Substitute LARC, LARC1, and LCIRCLE for arcs and
circles to the left.

The Procedures section of the Appendix offers an
additional variable radius arc procedure.

ARC Procedures:

RARC :RADIUS :DEGREES
Procedure which draws an arc to the right with
given :RADIUS covering the number of :DEGREES
i n d i c a t e d . U s e s R A R C 1 . ^

U - 2 8 T e r r a p i n L o g o T u t o r i a l

I

Utilities

LARC :RADIUS :DEGREES
Procedure which draws an arc to the left with given
:RADIUS covering the number of :DEGREES
indicated. Uses LARC1.

RCIRCLE :RADIUS
Procedure which draws a circle to the right with
given :RADIUS. Uses RARC.

LCIRCLE :RADIUS
Procedure which draws a circle to the left with
given :RADIUS. Uses LARC.

RARC1 :SIZE :DEGREES
Procedure which draws an arc to the right with a
radius equal to :SIZE x 360/(2 PI). Uses
CORRECTARCR.

LARC1 :SIZE :DEGREES
Procedure which draws an arc to the left with a
radius equal to :SIZE x 360/(2 PI). Uses
CORRECTARCL.

CORRECTARCR :SIZE :AMOUNT
Procedure which makes a small correction with each
stepofRARCl.

CORRECTARCL :SIZE :AMOUNT
Procedure which makes a small correction with each
stepofLARCl.

The CORRECTARC procedures compensate for the
error introduced by trying to make a fractional number
of repetitions in the ARC1 procedures, in the line:
REPEAT QUOTIENT DEGREES 5 [FD :SIZE * 5 RT 5]

T e r r a p i n L o g o T u t o r i a l U - 2 9

Utilities

BEFORE: Comparing Words

The BEFORE file contains a set of procedures that
allow you to compare words and numbers. The main
procedure, called BEFORE?, takes two words as input
and returns TRUE if the first comes alphabetically
before the second; otherwise, it returns FALSE.

Examples:
PRINT BEFORE? "ANTELOPE "ANTEATER
FALSE
PRINT BEFORE? "DENMARK "FINLAND
TRUE

PRINT BEFORE? 39 103
TRUE

When numbers and words are both used in the same
BEFORE? instruction, the number is always evaluated
as coming first.
PRINT BEFORE? 1492 "COLUMBUS
TRUE

This tool will help you write programs that alphabetize
lists of words or sort numbers.

CURSOR: Procedures for Character Output
Control: Position, Flashing, Inverse

These procedures are for controlling character output
to the screen. In Terrapin Logo for the Apple, the
CURSOR primitive is the only one provided for
controlling the location of the text cursor on the screen.
In Logo PLUS, CURSORPOS is a built-in command. ^
This first set of procedures performs operations not)
directly supported in Terrapin Logo.

U - 3 0 T e r r a p i n L o g o T u t o r i a l

Utilities
/'fl^fc-s _ _ 7

Character Control Procedures:

CURSOR.HV

CURSOR.H

^^m^\

CURSOR.V

Outputs a list of two elements: the
cursor's horizontal position and its
vertical position.
PRINT CURSOR.HV
O 19

Logo PLUS equivalent:PRINT CURSORPOS

Outputs the cursor's horizontal
position.
PRINT CURSOR.H
0
Logo PLUS equivalent:
PRINT FIRST CURSORPOS

Outputs the cursor's vertical position.
PRINT CURSOR.V
23
Logo PLUS equivalent:PRINT LAST CURSORPOS

The following procedures are useful in both Terrapin
Logo for the Apple and Logo PLUS.

FLASHING All characters printed after this
command will flash alternately black on
white, white on black. This includes
what Logo prints as well as everything
typed at the keyboard. Use NORMAL
to restore to white on black. To enter
this mode type:
FLASHING

Terrapin Logo Tutorial U-31

Utilities
i

INVERSE All characters printed after this com
mand (by Logo or from the keyboard)
will appear in inverse video, black on
white. To enter this mode, type:
INVERSE

NORMAL Restores the normal mode of white on
black. Type:
NORMAL

Everything printed after this will be
white on black.

PICK: Choosing Things at Random

The PICK tool allows you to pick a letter at random ^^^
from a word, or a word at random from a list of any ^)
length. Using PICK, you can choose an individual at
random from a list, combine words to make amusing
sentences of varying grammatical structures or explore
probability.

Although the Logo procedure for this purpose is short,
it may be beyond a beginning programmer's
understanding; thus it is provided on the disk as a tool.
TO PICK OBJ

OUTPUT ITEM 1 + RANDOM COUNT :OBJ :OBJ
END

To use PICK, read the file PICK from the Utilities Disk.
Here are some examples of ways to use PICK.

Printing the result of flipping a coin:
P R I N T P I C K [H E A D S T A I L S] ^

U - 3 2 T e r r a p i n L o g o T u t o r i a l

Utilities
/*^*N

Tossing a die:
PRINT PICK [12 3 4 5 6]

Picking a person at random from a list:
PRINT PICK [ABE BONNIE CARLOS DIANA]

Creating subject-predicate sentences:
MAKE "SUBJECT [GOLDFISH COMPUTERS [ICE

CREAM CONES] LLAMAS]
MAKE "PREDICATE [BOUNCE SWIM FLY WIGGLE

PRETEND MELT]
PRINT SENTENCE PICK :SUBJECT PICK PREDICATE
ICE CREAM CONES WIGGLE (one possible example)

f^ PPRINT: Word Wrap for Long Lines
Normally, when Logo displays lines of text that are
longer than 40 characters, the words at the ends of the
lines may be split in the middle. A tool can be written in
Logo that causes words to wrap neatly around the edge
of the screen and not be divided. The PPRINT tool
checks the position of the next word in a list and places it
on the next line if it won't fit on the current line. This is
sometimes referred to as "pretty-printing."

To use the PPRINT tool, read the PPRINT file. Use
PPRINT (or its PPR abbreviation) in the same way that
you would use PRINT (or PR). The difference is that
the words that are in the list will wrap around the
screen. Long lines are harder to edit than shorter ones,
but it is advantageous to have the PPRINT tool
available, especially when you are getting input of

sm^ unknown length from the user.

T e r r a p i n L o g o T u t o r i a l T j - 3 3

Utilities

The following examples show the difference between
PRINT and PPRINT. (Also included is a procedure for
the abbreviation PPR, equivalent to PPRINT.)

PRINT [THE QUICK BROWN FOX JUMPS OVER A
LAZY DOG.]
THE QUICK BROWN FOX JUMPS OVER A LAZY DO
G.

PPRINT [THE QUICK BROWN FOX JUMPS OVER A
LAZY DOG.]
THE QUICK BROWN FOX JUMPS OVER A LAZY
DOG.

STRING: Manipulating Word Segments

The file STRING contains a tool for isolating a set of ^^
letters within a word. The procedure STRING takes i
three inputs: two numbers and a word, which could be a
number. STRING returns to you a set of letters
between the numbers representing the position of the
letters in the word. For example:

PRINT STRING 4 6 "ANTEATER
EAT

The letters EAT are the fourth through sixth letters of
the word "ANTEATER.

Other examples:

PRINT STRING 3 4 1928
28

The following example shows how a date format can be
changed using STRING as a tool. If the variable name ^-\
"DATE has been assigned the value of 08-22-88 using '

U - 3 4 T e r r a p i n L o g o T u t o r i a l

Utilities

/ ^ ^ K

the following instruction:

MAKE "DATE "08-22-88

Then the following instructions can be used. (The
computer will display the text in italics.)
MAKE "MONTH ITEM (STRING 1 2 :DATE) [January

February March April May June July August
September October November December]

PRINT :MONTH
August
MAKE "DAY STRING 4 5 :DATE
PRINT :DAY
22
MAKE "YEAR WORD 19 STRING 7 8 :DATE
PRINT :YEAR
1988
PRINT (SENTENCE :MONTH WORD :DAY ", :YEAR)
August 22, 1988

WAIT: Causing Delays in your Programs
(Terrapin Logo Only)

The WAIT tool that is provided on the Terrapin Logo
Utilities Disk is a convenient way to place a timed delay
into a program. (Since WAIT is a built-in command in
Logo PLUS, this file is not included on the Logo PLUS
Utilities Disk.)

WAIT takes one input, a positive integer representing
tenths of a second. Therefore, the instruction WAIT 10
pauses a program for 1 second; the instruction WAIT
60 causes a delay of 6 seconds, and so on.

(~^ Note that you cannot stop a wait that is in progress using
<CTRL>G.

T e r r a p i n L o g o T u t o r i a l U - 3 5

Utilities
i

FILE HANDLING UTILITIES

BIN JO TEXT: Converting Binary Files to
Text Files (Terrapin Logo only)

Files containing Logo procedures are saved in a binary
format for greater speed in reading and saving them.
However, there may be times when you would prefer
your Logo programs to be in a standard text format. As
text files, they can be read into a word processing
program or sent to another computer through a modem.The BIN.TO.TEXT program makes this conversion for
you.
Note that since Logo PLUS already saves its programs
as text files, this file is not provided on the Logo PLUS
U t i l i t i e s D i s k . ^ \

The BIN.TO.TEXT program is not written in Logo.
Therefore, you must save the program you wish to
convert before leaving Logo. To use it, place the
Terrapin Logo Utilities Disk in the disk drive and
restart the computer. At the] prompt sign, type
RUN BIN.TO.TEXT

You will see a menu with options to convert your file or
exit. Press 1 and <RETURN> to convert a file.

You will be asked for the slot and drive number of the
disk containing the Logo program and the name of the
program you want to convert. Do not include the
.LOGO extension that Logo adds to filenames.

Then you will enter the slot and drive number of the •-*.
disk on which you want to place the new file. (You can '

T j - 3 6 T e r r a p i n L o g o T u t o r i a l

Utilities

place the new file on the same data disk, if you would
like.) Then you will be asked to type a name for the text
file. You can use a new name or the same name you
typed for the Logo file, since the .LOGO extension will
not be added to the new filename.

Make sure the disks are in place and press <RETURN>.
You can cancel the process at this time by pressing
<ESC>. When the process is complete, you will return
to the opening menu.

To read your newly created text file into a word
processor or to use it with a modem, you must either use
software programs that are based on the DOS 3.3
operating system, or you must convert the file to
ProDOS using the ProDOS User's Disk before reading
it into a ProDOS-based software program. See your

C^ computer's documentation for instructions.

FID: File Management Utility: How to Delete,
Rename, Lock, and Unlock Files, Set Default
File Extension (Terrapin Logo only)

FID is a file utility program written in Logo. It allows
you to catalog the disk, rename files, and delete files, all
with single-keystroke commands. (Since Logo PLUS
contains built-in commands for these functions, this
utility file is not necessary.)
Each file command asks for the name of a file, and
appends to it the current "file extension." The "."
command in FID allows you to change the file
extension. Useful file extensions for Logo are "LOGO,"
"PICT," and "BIN."

T e r r a p i n L o g o T u t o r i a l U - 3 7

Utilities

After you read in the FID file, it will automatically
begin. Use the character indicated by FID to list, delete,
rename, lock, or unlock files on the disk, or to set the
default file extension. Use the ? command to view the
list of available commands. In the event of a disk
error, restart the program by running the procedure
FID. (See DOS in the Logo Command Glossary.)

TEXTEDIT:
How to Save, Read, Examine, and Print
Files Containing Text (Terrapin Logo only)

These procedures allow you to use the Logo editor to
read and save files of English text. The TEXTEDIT
commands allow you to read text into the editor, save
the contents of the editor to disk, print the contents of
the editor, and so on. Logo PLUS contains built-in ^"""N
primitives that replace the need for this Utilities
program.

To use Logo as a text editor, first read the file by typing

READ "TEXTEDIT

To start a text file, type

TO <RETURN>

This puts you into the editor, with the white line across
the bottom of the screen.

Type the text you want, making use of the editing
commands described in the Edit section of the
Appendix.

U - 3 8 T e r r a p i n L o g o T u t o r i a l

:!:
/̂ ^ \̂

S ^ * \

Utilities

NOTE THE DIFFERENCE HERE: When you have
finished and are ready to print or save the text, leave the
editor by typing

<CTRL> G

Do NOT type the <CTRL> C used to define proce
dures.

Use SAVETEXT (described below) immediately to
save the file on the disk. You can always replace it with
a corrected version, but if you accidentally erase it from
your workspace before you save it, you must retype the
text in its entirety.

Read the file back from the disk using READTEXT
(also described below).
WARNING: To work on the file again after using
READTEXT, type EDIT (or ED). If you type TO when
there is already text in the editor, it will be erased. If
you have not yet saved it, it will be lost completely.
However, if it is on the disk, it only means reading it in
again.
READTEXT :FILE Reads a Logo file into the editor.

Type ED to enter the editor or
display the contents of the editor
on the screen.
READTEXT "WASHINGTON
SHOWTEXT
EDIT

SAVETEXT :FILE Saves the contents of the editor to
the disk in the file named. To store
text in the file GEORGE, type

T e r r a p i n L o g o T u t o r i a l U - 3 9

Utilities

SHOWFILE :FILE

PRINTFILE :FILE

PRINTTEXT

SHOWTEXT
(a Logo primitive)

SAVETEXT "GEORGE

Reads the file named and prints it
out on the screen. SHOWFILE is a
combination of READTEXT and
SHOWTEXT. Example:
SHOWFILE "GEORGE

Reads the file into the editor and
prints it to the printer. If your
printer is not controlled from Slot
1, change the value of :PRINTER.
Example: if your printer card is in
Slot 7, type
MAKE "PRINTER 7

To print the contents of the file
GEORGE to the printer, type
PRINTFILE "GEORGE

Prints to the printer the text
currently in die editor. Uses
SHOWTEXT. Example: to print
the contents of the editor, type
PRINTTEXT

If your printer is not controlled
from Slot 1, change the value of
:PRINTER. (See PRINTFILE.)

Prints on the screen the text
currently in the editor.

s ^ ^ ^ ^ k

/ • " ^ ^ ^ k

~ i

U-40 Terrapin Logo Tutorial

Utilities

DPRINT: Printing Text Into Disk Files
(Terrapin Logo only)

The procedures in DPRINT can be used to write text
into disk files. TEXTEDIT (see previous section)
contains procedures for saving, reading, examining,
and printing the files. For most uses, the TEXTEDIT
procedures are more appropriate and easier to use.

To create a new text file, type

OPEN "(name of file)
DPRINT [what you want to type into the file]
CLOSE

Example:
(~ ^ O P E N " S E S A M E

DPRINT [THIS IS A TEST]
CLOSE

The text is stored with the CLOSE procedure. To see
the file listed on the disk, type CATALOG. To see the
contents of the file, use the procedure SHOWFILE in
TEXTEDIT. Example:

READ "TEXTEDIT (if these procedures are not in memory)
SHOWFILE "SESAME

THIS IS A TEST

To add to a file, use OPEN.FOR.APPEND instead of
OPEN. Example:

OPEN.FOR.APPEND "SESAME
DPRINT [TESTING APPENDING]

f " C L O S E

T e r r a p i n L o g o T u t o r i a l U - 4 1

Utilities

SHOWFILE "SESAME

THIS IS A TEST
TESTING APPENDING

WARNING: If you use OPEN with an existing file, the
newly entered text will overwrite the text already in the
file. Example:

OPEN "SESAME (assuming the text above is in it)
DPRINT [HI]
CLOSE

SHOWFILE "SESAME

HI
ISA TEST

TESTING APPENDING

The following procedures are contained in the DPRINT
file.

OPEN :FILE Takes a file name as input. The input
to DPRINT (see below) will be
printed into die Logo file with this
name.

CLOSE Closes the open file. All output will be
written to the file.

DPRINT :ITEM Will cause the item to be printed into
the file.

OPEN.FOR.APPEND :FILE
Used instead of OPEN. Will cause
everything printed with DPRINT to
be appended to the existing file rather ^""\
than writing over it.

U - 4 2 T e r r a p i n L o g o T u t o r i a l

Utilities
; ; i

Additional notes:
The files created by these procedures can be printed and
read into the editor using the procedures in the file
TEXTEDIT. If you use READ on such a file, Logo will
attempt to execute its contents as Logo commands.
You cannot read or save a file or use the editor or
graphics while a file is open for DPRINTing. Also, you
cannot print more than 8192 characters; any extra
characters will be ignored.

LOGO FILES FOR ASSEMBLY LANGUAGE
INTERFACING

ADDRESSES, AMODES, ASSEMBLER,
^ OPCODES: Interfacing Logo and the

ASSEMBLER The Logo assembler procedures.
AMODES The file of names describing the 6502

addressing modes.
OPCODES The file of names describing the 6502

mnemonics for the assembler.
ADDRESSES The file of names describing addresses

in the Logo interpreter for the
assembler.

Refer to the Technical chapter for detailed information
about these programs.

T e r r a p i n L o g o T u t o r i a l U - 4 3

Utilities

Useful and Interesting Memory Locations
There are a number of memory locations that even non
technical Logo users will find interesting. The
following is a simplified and partial list of memory
locations used by Logo. A complete listing can be found
in the Technical chapter.

To use any of these variable names, first read the
ADDRESSES file from the Utilities Disk.

The use of the Logo primitive .DEPOSIT changes the
value stored at the memory location indicated by the
variable. Placing a new value in a memory location will
cause the Logo system to behave differently, as
described below. The primitive .EXAMINE allows you
to look at the contents of a location in memory.

WARNING: If values other than those listed below or
other memory locations are used, there is no telling
what behavior your computer will assume. If strange
and unusual events occur, it is best to reboot your
computer, which will reset the memory to its original
state.

Reading a File into the Editor
.DEPOSIT :SAVMOD 1

Causes Logo not to define the procedures in a
file that is read in. The text is placed in the
editor. Type ED to enter the editor; <CTRL>
C will cause the procedures to be defined as
usual. Use SAVE to save the current contents
of the edit buffer.

.DEPOSIT :SAVMOD 0
Cancels special READ and SAVE mode. ^^

~)

U - 4 4 T e r r a p i n L o g o T u t o r i a l

/■̂ N̂
V

Utilities

The TEXTEDIT procedures described earlier
depend on the use of :SAVMOD.

Displaying Outer Brackets Around Lists
.DEPOSIT :BKTFLG 1

Causes Logo to retain outer brackets around
lists, displaying them when variables are
printed.

.DEPOSIT :BKTFLG 0
Returns to normal mode where outer brackets
are not displayed.

Disabling Special <CTRL> Characters
.DEPOSIT :NOINTP 1

Disables Logo's special "interrupt" characters
/ ^ < C T R L > F, < C T R L > S , < C T R L > T, < C T R L >

G, and <CTRL> W. These keystrokes can then
be read using their ASCII codes (6,19,20,7
and 23 respectively).

.DEPOSIT :NOINTP 0
Restores these keystrokes to their normal
mode.

.DEPOSIT :NOINTP 255
Disables <CTRL> Z in addition to those
disabled by a value of 1 (see above).

Determining the Position of the Text Cursor
.EXAMINE :CH

Returns the horizontal position of the text
cursor.

.EXAMINE :CV
f^^ Returns the vertical position of the text cursor.

T e r r a p i n L o g o T u t o r i a l U - 4 5

Utilities

The following operation, for use with
Terrapin Logo for the Apple, returns a list
containing the horizontal and vertical position
of the text cursor. (Logo PLUS contains a
CURSORPOS primitive that performs this
function.)
TO CURSORPOS

OUTPUT LIST .EXAMINE :CH .EXAMINE :CV
END

Inverse and Flashing Text
.DEPOSIT :INVFLG 0

Sets text to inverse mode (black letters on
white background).

.DEPOSIT :INVFLG 64
S e t s t e x t t o fl a s h i n g m o d e . ^ " " ^

.DEPOSIT :INVFLG 255
Sets text to normal mode.

See also the CURSOR file on the Utilities Disk.

^

U - 4 6 T e r r a p i n L o g o T u t o r i a l

r
TECMMCMu

Use of the Logo System
The Logo system includes a full interpreter for the
Logo language, a complete text editor for editing
procedure definitions, and an integrated "turtle
graphics" system. This section provides notes on how
these different functions interact.

Modes of Using the Screen
The Logo system uses the display screen in three
different ways, or "modes."

NODRAW Mode
This is the mode in which the system starts. Logo
prompts the user for a command with a question mark,
followed by a blinking square called the "cursor." You
may type in command lines, terminated with RETURN.
Logo executes the line and prints a response, if
appropriate.
Whenever the cursor is visible and blinking, Logo is
waiting for you to type something, and will do nothing
else until you do.

The system includes a flexible line editor, which allows
you to correct any typing errors in a command line that
you have typed in draw or nodraw mode. The available
keystrokes, described on page T-6, correspond to the
<ESC> and <DELETE> keys, arrow keys, <CTRL> A,
<CTRL> D, <CTRL> E, <CTRL> G, <CTRL> X,
<CTRL> P.

EDIT Mode
^"^ Using the commands TO or EDIT places Logo in edit

mode. For example, if you enter Logo and type

T e r r a p i n L o g o T u t o r i a l T - l

Technical

^
TO POLY :SIDE :ANGLE

followed by <RETURN>, the system will enter the
screen editor with the typed line of text on the screen.
Logo indicates that it is in edit mode by printing "EDIT:
CTRL-C to define, CTRL-G to abort" in reverse-color
letters at the bottom of the screen.
At this point you can use all of the editing keystrokes
described beginning on page T-8 to create and/or edit
the text for the procedure. Typing <CTRL> C will exit
the editor and cause the procedure to be defined
according to the text you have typed. If you are using
128K, you will return to the screen from which you
entered the editor; if you are using 64K, you will return
to nodraw mode. Typing <CTRL> G aborts the edit.
Logo will return to nodraw mode without any
procedures being defined. If you begin editing a /^
procedure, and decide that you don't want to change it
after all (or would like to start over), type <CTRL> G.
The procedure you were editing will not be changed.
In this mode, <RETURN> is just another character,
which causes the cursor to move to the next line. In edit
mode, <CTRL> C causes Logo to evaluate the contents
of the edit buffer just as <RETURN> in other modes
causes Logo to evaluate the line just typed.
To edit the most recently defined procedure, type just
EDIT (or its abbreviation, ED). In draw mode with a
64K computer, this edits the current definition of the
procedure most recently defined or PO'd. In all other
cases, however, typing EDIT with no inputs returns to
edit mode with the contents of the edit buffer intact. For
example, after a READ or SAVE, everything read or
saved will be in the edit buffer. If you had aborted the ^^
definition of a procedure with <CTRL> G, the edit ^]
buffer's contents at the time you typed <CTRL> G will

T - 2 T e r r a p i n L o g o T u t o r i a l

Technical

still be in the edit buffer; you can retrieve it by typing
EDIT not followed by a procedure name. Typing EDIT
followed by the procedure name would edit the
procedure as it was last defined.
Typing TO with no procedure name puts you into an
empty edit buffer.

In draw mode, you use the turtle for drawing on the
screen. If you attempt to execute any turtle command
while in nodraw mode, the system will enter draw mode
before executing the command. The NODRAW
command (abbreviated ND) exits draw mode and enters
nodraw mode. Actually, there are different types of
draw mode.

Splitscreen mode is the normal way in which draw
mode is used. Four lines at the bottom of the screen are
reserved for text, and the rest of the screen shows the
field in which the turtle moves. The turtle field actually
extends to the bottom of the screen and so is partially
masked by the four-line text region. In fullscreen mode
the text region disappears and you can see the entire
turtle field. You can still type commands, but they will
not be visible. If the system needs to type an error
message, it will first enter splitscreen mode so that the
message will be visible.
You can use the characters <CTRL> F and <CTRL> S
to switch back and forth between splitscreen and
fullscreen mode. Pressing <CTRL> F while in
splitscreen mode will enter fullscreen mode. Pressing<CTRL> S will restore splitscreen mode. It is also
sometimes convenient to be able to switch back and
forth under program control. The commands
SPLITSCREEN and FULLSCREEN are provided for

T e r r a p i n L o g o T u t o r i a l T - 3

Technical

^

this purpose.
In draw mode, Logo displays just four lines of text. This
can be an inconvenience, since error messages are some
times longer than four lines. If you type <CTRL> T
while in graphics mode, the turtle picture will disappear
and you can use the entire screen for text, just as in
nodraw mode. The difference is that you are actually
still in draw mode: turtle commands can be executed,
although you will not see the picture being drawn. The
<CTRL> T command is useful for looking at long
catalog listings, procedures that you have displayed or
error messages. <CTRL> T is equivalent to the
TEXTSCREEN primitive. The only way to make the
graphics screen visible after using <CTRL> T is to type
<CTRL> F to return to fullscreen, mode, or <CTRL> S
to go back to splitscreen mode.
TEXTSCREEN is different from NODRAW.
NODRAW clears the text screen, clears the graphics
screen, and resets the pencolor, turtle visibility, pen
state, background color, and wrapping mode to their
default values.
Here is a list of control characters not related to editing
functions. All are available in draw mode and nodraw
mode. Some exist in edit mode, also, and are specially
indicated.

Non-Editing Control Characters:
<CTRL> G In edit mode, exits the editor without

processing the edited text. In draw or
nodraw mode, stops execution and returns
control to the user.

<CTRL> S In graphics mode, gives mixed text/ ^^
graphics screen.

T - 4 T e r r a p i n L o g o T u t o r i a l

Technical

/ * ^ \

<CTRL> T In graphics mode, gives full graphics
screen.

<CTRL> W Pauses program execution, or causes it to
Wait. Repeatedly typing <CTRL> W will
cause Logo to print line by line (or the
next list element if lists are being printed).
Typing any character other than <CTRL>
W or <CTRL> G will resume normal
processing. Hold down <CTRL> W (or
use it with the repeat key on an Apple 11+)
to obtain "slow motion" effects.

<CTRL> Z Causes Logo to pause. You may type
anything and Logo will execute it as if it
were a line of the current procedure. Type
CO or CONTINUE to continue.

<CTRL>- Restores output to the screen. (See
SHIFT-M OUTDEV.)

<CTRL>- This generates an underscore (_) character
SHIFT-P (only with the Apple 11+ computer). It is a

regular printing character, available in all
three modes.

Editing
The Logo system contains a fully-integrated screen
editor, and a compatible line editor. The screen editor is
used for defining Logo procedures in edit mode, and the
line editor is used for typing Logo commands to be
executed in draw and nodraw modes.

Line Editor

While you are typing an instruction to Logo, there are
many ways in which you can make corrections to the

Terrapin Logo Tutorial T-5

Technical

line before you press <RETURN>.

right and left Move the cursor right or left along the
arrow keys line. If you want to insert characters

anywhere in the line, simply move the
cursor there with the arrow keys, and
type what you want.

<ESC> or Erases the character to the left of the
<DELETE> cursor.
<CTRL> A Moves the cursor to the beginning of the

line. If you add text now, the characters
will push the rest of the line to the right;
nothing will be lost or overwritten.

<CTRL> D Deletes the character at the cursor
<CTRL> E Moves the cursor to the end of the line.
<CTRL> X Deletes all characters from the cursor to

the end of the line.
<RETURN> Ends the line and has Logo act upon it. It

is not necessary for the cursor to be at the
end of the line; all characters you see on
the line will be read by Logo.

Lines typed to Logo may wrap around to the next screen
line. The editing commands will still work on them
exactly as if the line did not spread over more than forty
characters. A line can contain up to 256 characters.
However, variables defined at toplevel (at the ? Logo
prompt) can be combined using WORD or SENTENCE
to create variables that contain more than 256
characters. The limit is the length of the edit buffer,
which is 8192 characters for Terrapin Logo for the
Apple and 4096 characters for Logo PLUS.

*̂"%

T-6 Terrapin Logo Tutorial

Technical
j,_x ̂ a^^^^^^^^^ :̂'-v^ ĵ Tr̂ r̂T^~^^ .̂'7 -̂:-- "■ ■• .■'■■■■ . - -.. ■ ■.-.. •.-./£„■:■•• a.-**k:. *.■ ̂ n

('

Logo remembers the most recently typed line in both
draw and nodraw modes so that you can insert it into the
current line by typing <CTRL> P. In Terrapin Logo
for the Apple, filing commands, such as SAVE and
READ, cause Logo to forget the last line typed. In Logo
PLUS, all lines can be recalled using <CTRL> P.
Screen Editor

Logo's screen editor allows you to define procedures.
Enter the editor by typing EDIT, ED or TO, followed
by the name of the procedure you wish to define or edit.
Once Logo is in "edit mode" the characters you type
will appear on the screen. Pressing <RETURN> will
cause the cursor to move down to the next line. (If the
cursor was not at the end of the line, it will split the

f^^ current line into two lines.) It will not cause Logo toexecute the line.
Various other commands are available for editing the
line on which the cursor appears, and moving to other
lines. To move down to the next line, press the down-
arrow key or type <CTRL> N (N is for Next). To move
up to the previous line, press the up-arrow key or type
<CTRL> P (P is for Previous).
Lines may be of any length, as long as they fit in the edit
buffer. Lines which are longer than the screen width
"wrap around" to the next line. You can tell they are
continued lines because an exclamation point ("!") is
shown in the last screen column. This mark is not a part
of the procedure being typed, and serves only as a
reminder that the line does not actually end at that point.
There is a slight difference here between edit mode and
draw or nodraw mode; only edit mode displays the

(^ e x c l a m a t i o n m a r k s .

T e r r a p i n L o g o T u t o r i a l T - 7

Technical

^

Although Logo procedures are seldom more than a few
lines long, the text you may edit is not limited to one
screen page. If the text you are typing begins to
overflow the current page, the system will automat
ically shift the display so that the current line is in the
middle of the screen. If you use keystrokes to move to
either the top or bottom edge of the screen, the next
page will appear. The <CTRL> F key inside edit mode
moves immediately to the next page of text. To move
back to the previous page, type <CTRL> B. If you are
on the first page, <CTRL> B will move to the top of it;
similarly, on the last page, <CTRL> F will move to theend. If the text you are editing is more than one page
long, you can use <CTRL> L to center the current line
on the screen.
To exit the editor and have the procedure you typed be
defined, type <CTRL> C. To exit without having the ^"^
procedure defined, type <CTRL> G. After typing
<CTRL> G, you can return to the editor with ED or
EDIT, and have all the text still there, providing you
didn't use graphics or filing in the meantime. (If your
computer has 128K of memory, then using the graphics
screen will not affect the editor, and vice versa.)
The text you type in the editor doesn't have to be part of
a procedure. See the information about TEXTEDIT in
the Utilities chapter for using Logo to edit text.
The following is a summary of the available editing
commands.
Screen Editing Commands:

arrow keys Move the cursor one character to the left,
right, up or down a line without erasing ^^^
a n y c h a r a c t e r s . ^ 1

T - 8 T e r r a p i n L o g o T u t o r i a l

r^
Technical

^ • v

/^^ \

<ESC> or Rubs out the character immediately to the
<DELETE> left of the cursor and moves the cursor

one space to the left.

<CTRL> A Moves the cursor to the beginning of the
current line. <CTRL> A was chosen for
this command because it lies at the
beginning of a row of the keyboard, and
is the first letter in the alphabet.

<CTRL> B When editing more than one screenful of
text, moves the cursor one screenful of
text backwards, or to the beginning of the
buffer if not that much text precedes the
cursor.

<CTRL> C Exits the editor and processes the edited
text.

<CTRL> D Deletes the character at the current
cursor position, that is, the character over
which the cursor is flashing.

<CTRL> E Moves the cursor to the end of the current
line.

<CTRL> F When editing more than one screenful of
text, moves the cursor one screenful of
text forward, or to the end of the buffer if
not that much text follows the cursor.

<CTRL> G In edit mode, exits the editor without
processing the edited text. In all modes,
stops execution and returns control to the
user.

<CTRL> L In edit mode, scrolls the text so that the
line containing the cursor is at the center
of the screen.

Terrapin Logo Tutorial T-9

Technical

/̂ ^^ \̂

<CTRL>N
or down-arrow

<CTRL>0

<CTRL>P
or up-arrow

<CTRL>X

<CTRL>Y

Moves the cursor down to the Next
line.

Opens a new line at the cursor position.
That is, <CTRL> O is equivalent to
typing <RETURN> and then pressing the
left arrow key. It is most useful for add
ing new lines in the middle of procedures.
In edit mode, moves the cursor to
the Previous line. In draw or nodraw
mode, retrieves previous input line so
that it can be edited and/or re-executed.
Note for users of Terrapin Logo for the
Apple: In draw and nodraw mode, file-
system commands cause Logo to forget
the previous line.
Deletes all characters on the current line
to the right of the cursor. Use <CTRL> X
several times in a row to delete or cut
multiple lines of text, up to a limit of 256
characters. Use <CTRL> Y to restore
them or paste them in a different location.
Use <CTRL> X with <CTRL> Y to cut
and paste text in the editor. See <CTRL>
Y for information on how to retrieve text
deleted in this way.
Yanks back the lines previously deleted
using <CTRL> X. If you delete a line and
move the cursor to delete another line,
then the first deleted line is forgotten. If
you delete several lines in a row using
<CTRL> X without moving the cursor,
then <CTRL> Y will remember them all.
Use <CTRL> X with <CTRL> Y to cut
and paste text in the editor.

^

T-10 Terrapin Logo Tutorial

Technical

^m^

Apple Peripherals

Logo's ordinary input and output operations deal with
the Apple keyboard, the screen, and one disk drive.
There are also commands for reading input from up to
four game paddles that can be attached to the Apple.
(See the PADDLE and PADDLEBUTTON primitives.)
In addition, Logo provides the OUTDEV primitive for
accessing output devices other than the screen. This
command takes one input that specifies a slot on the
Apple board at which a peripheral interface card should
be attached. It is also possible to use OUTDEV to
designate a user-supplied assembly language routine
that should be called in place of the normal character
output routine.

(~^ The OUTDEV command causes any subsequent output
that would normally go to the Apple screen to be direct
ed at the device in the specified slot. Unlike the PR #
command of the BASIC language, OUTDEV does not
direct everything you type to the alternate device. The
Logo screen editor and toplevel line editor are
unaffected. Using OUTDEV with an input of 0 will
reset the output device to the screen.

Typing <CTRL> SHIFT-M will redirect output to the
screen. It is equivalent to executing an OUTDEV 0, but
takes effect immediately, even if Logo is in the process
of printing something to a printer. (If the computer is
"hung" waiting for the printer to receive a character,
however, this keystroke will not take effect. Typically,
this condition occurs when the printer is off or
otherwise disabled.)
Color Control
If you have a color TV monitor, you can use the

T e r r a p i n L o g o T u t o r i a l T - l 1

Technical

PENCOLOR command (abbreviated PC) to change the
color of the lines that the turtle draws. You can also use
the BACKGROUND command (abbreviated BG) to
make the turtle draw on backgrounds of various colors.
Both PENCOLOR and BACKGROUND take a number
0 through 6 as input. The correspondence of colors to
numbers is as follows:

nymber gplpr
(The actual color that appears on the

0 black screen corresponding to any of these
1 white color names can vary great ly de-
2 green pending on the adjustment of the
3 v io let moni tor. Also, i f you have a black
4 orange and white monitor, the "colors" wi l l
5 b lue appear as s t r iped ver t i ca l l i nes .)

Drawing with PENCOLOR 6 "reverses" the color of all ^dots that the turtle passes over. The actual color
produced depends on both the background color and thecolor of the dot the turtle is passing over but in all cases,
reversing the color of a dot and then reversing it again
will restore the original color. PENCOLOR 6 is most
useful with black-and-white graphics.
If you don't explicitly give any BACKGROUND or
PENCOLOR commands, Logo will default to
BACKGROUND 0 and PENCOLOR 1.
To erase a line that has been drawn, set the pen color to
match the background color and draw over the same
line again. Reset the pen color to continue with your
design. Logo PLUS contains a PENERASE (PE)
command that performs this function for you, allowing
you to erase a line when you redraw over it. Cancel out
of PENERASE mode using the primitive PENDOWN
(PD) or changing the pencolor with PENCOLOR (PC). ̂

T - 1 2 T e r r a p i n L o g o T u t o r i a l

Technical

^u^ -V

Drawing on Colored Backgrounds
When drawing on a colored background (2 through 5),
only two of the four colors—green, violet, blue, orange
—are available. When the background is green or
violet, blue and orange cannot be used: PENCOLOR 4
will draw in green and PENCOLOR 5 will draw in
violet.

When the background is blue or orange, PENCOLOR 2
will draw in orange and PENCOLOR 3 will draw in
blue. Also, if you draw a picture on the screen and then
change the background color, the colors of the lines in
the picture may change, or the lines may become
distorted in unexpected ways; however, returning to the
background color in which the lines were drawn will

^^ always restore their original appearance. These strange
[" effects are the result of a compromise with the Apple

computer color system, which does not allow, for
example, green dots to appear very close to orange dots.

Drawing without Color Control
In order to obtain clear colors with the Apple computer,
the Logo system must draw lines more thickly than
would otherwise be necessary. This means that
drawings will not look as precise as they could if one
drew only thin lines. If you don't care about color, you
will obtain better looking drawings by using thin lines.
To do this, select BACKGROUND 6. In
BACKGROUND 6, PENCOLOR 0 gives black, 1
through 5 give "white," and 6 gives "reverse." The
reason that "white" is in quotes is that "white" lines may
not always appear white on a color monitor. In
particular, "white" vertical lines will be either red or

^m^ green, depending on their position.

T e r r a p i n L o g o T u t o r i a l T - 1 3

Technical

Adding Text to the Graphics Screen

Logo PLUS includes commands for placing text of
varying styles on the graphics screen as well as a built-in
screen editor. Text can be entered in plain, bold,
underlined or italicized text and the color of the text can
be set using the primitive PC. Logo PLUS users should
refer to the Getting Acquainted with Logo PLUS
booklet for instructions on using these primitives.

Users of Terrapin Logo for the Apple can stamp plain
text characters on the graphics screen using the
HIRES.TOOLS program that is contained in the
Utilities II package, available separately from Terrapin.

The Logo File System

The Logo file system allows you to save procedure /^m\
definitions on floppy disk. A user may have many files
on a single disk, and the files are distinguished by the
fact that they are named. The names of the files are
listed in the disk catalog.

The standard file-handling commands in Logo are
SAVE, SAVEPICT, READ, READPICT, ERASEFILE
and ERASEPICT. These and other disk operations,
such as LOCK, UNLOCK, RENAME, etc., can also be
performed using the DOS primitive. Logo PLUS,
implemented in ProDOS, includes many other file
handling primitives, described in the Getting
Acquainted with Logo PLUS booklet.
Disk Files

When you use Logo, you should normally have a Logo
file diskette mounted in the disk drive. File diskettes
may be created as described in the chapter Beginning in ^"^
Logo. In addition to the following sections, users of

T - 1 4 T e r r a p i n L o g o T u t o r i a l

/̂ ^̂ \̂
Technical

Log*? PL£/S may also want to refer to the Getting
Acquainted with Logo PLUS booklet for information
regarding the use of directories.
If you want to save your procedure definitions, use the
SAVE command. For example,
SAVE "MYSTUFF

will save all the procedure definitions and names
currently in the workspace in a file named MYSTUFF.
There can be both a procedure and a file with the same
name; however SAVE saves everything in the
workspace and will not save only the procedure by that
name. If you already had a file of that name, the old one
will be deleted.

/^ The READ command takes a file name as input and
reads the procedures and names from that file into the
workspace. The procedures and names will be added to
the ones currently in workspace. If you are using Logo
with 64K of memory, be aware that reading or saving a
file while in draw mode will first move you to nodraw
mode. This is because, with just 64K of memory, the
editor and the graphics screen must share the same
memory location.
Notice that the file names given as inputs to SAVE and
READ are preceded by a quote and have no following
quote.
The CATALOG command lists all the files on the disk.
Logo workspace files will be listed with the characters
".LOGO" appended to the name. For example, the file
created by the instruction

^ S A V E " M Y S T U F F

T e r r a p i n L o g o T u t o r i a l T - 1 5

Technical

will be listed in the catalog as MYSTUFF.LOGO. Do
not include the .LOGO part of the name when you use
the READ or SAVE commands.

To remove a file from the disk, use the ERASEFILE
command, which takes as input the name of the file to be
erased. As with READ and SAVE, the filename must be
preceded by a" mark.

Saving Pictures
In addition to saving procedure definitions, Logo also
allows you to save a graphics screen image on the disk
so that it can be read back in and displayed. To do this,
use SAVEPICT and READPICT.

SAVEPICT, which is similar to SAVE, takes a name as
input. It saves on the disk the picture currently on the /^m\
turtle graphics screen. (SAVEPICT should only be done
when you are in graphics mode.) READPICT reads in a
picture that was saved by SAVEPICT, and displays this
picture on the screen.
When you do a CATALOG you will notice that ".PICT'
is appended to picture files just as the ".LOGO" is
appended to regular Logo files. Do not include the
".PICT" part of the name when you use the READPICT
command. (However, you do need the ".PICT" if you
access the file from outside of Logo.)

To erase a picture from the disk, use the ERASEPICT
command, which takes a quoted picturename as input.

Logo picture files are stored in the standard binary file
format. In memory, they are located in the primary
graphics page.

T - 1 6 T e r r a p i n L o g o T u t o r i a l

Technical
/ • • K ^

Changing the Turtle Shape
Shape Tables

Instructions for using the shape editor can be found in
the Utilities chapter. This section involves a more
technical discussion of how the shape edit program
works.

The Logo turtle is drawn using the Apple "shape"
mechanism, which allows specification of shapes by
tables of two- and three-bit vectors as described in the
Applesoft Programming Reference Manual. You can
design your own shapes for Logo to move around on the
screen in place of the turtle.

To set up your own shape table, deposit the location of
the first element of the table in the address USHAPE.
(See the explanation of Logo addresses later in this
chapter.) The size of the turtle or of the created shape
can be changed with the one-byte size code contained in
address SSIZE. The default value, 1, is best for the
regular turtle; however, values of 2 or greater often
make user-defined shapes more visible.

Unlike the general Apple shape mechanism, the Logo
interface to shapes allows user-defined shapes to be
displayed only at 0,90,180 and 270 degree headings.
The heading at which the shape is displayed is deter
mined by the quadrant in which the "turtle" is facing
and can be changed by turning the "turtle" with the
usual LEFT and RIGHT commands. The format of
shape tables is as described in the Applesoft Reference
Manual, except that the header information in the shape
table should be omitted. Begin each shape table directly
with the vectors. Terminate it normally.

T e r r a p i n L o g o T u t o r i a l T - 1 7

Technical

You can construct a shape table by hand and use
.DEPOSIT to store it in the Logo area reserved for user
code, and then set USHAPE and SSIZE. Note that you
can make more than one user-defined shape and switch
between them by changing USHAPE.

Note that the shape editor is itself a collection of Logo
procedures that work by using .EXAMINE and
.DEPOSIT according to the scheme outlined above.
You can read in the procedures from the Utilities disk
file SHAPE.EDIT and use them as a guide to writing
similar functions.

Assembly Language Entetfaces
to Logo
The Logo system for the Apple has been designed to be)
both powerful and easy to use. Writing and executing
programs in the Logo language using its built-in
primitives should be sufficient for most purposes.
However, there are situations in which it is desirable to
extend the capabilities of the system by getting direct
access to machine language.

Warning: This chapter will only be useful and
intelligible to people who are familiar with assembly
language programming on the Apple.
The Logo system has various "hooks" built into it that
enable users to directly access memory locations in the
Apple and to interface assembly language routines to
Logo programs. The Logo Utilities disk includes a 6502
machine language assembler that aids in doing this.
These hooks into Logo allow you to create simple
animation effects by supplying a new shape to be ^"^
displayed in place of the Logo turtle. They also allow

T - l 8 T e r r a p i n L o g o T u t o r i a l

Technical
■ i

you to modify the behavior of the Logo editor so that it
can be used as a regular text editor rather than as a
procedure editor, to access disk files in non-standard
ways and to generate music.

Note: Throughout this chapter, we will use the
convention of specifying hexadecimal numbers as
prefixed by a dollar sign, e.g., $9E is 158 decimal.

EXAMINE and DEPOSIT

These two commands are essentially the usual Apple
PEEK and POKE routines. One difference is that the
addresses should always be specified as positive
numbers. Apple PEEK and POKE require addresses
above 32K to be given as negative numbers.

(^ .EXAMINE takes an address as an input and returns (as
a number) the byte stored in that address.

.DEPOSIT takes two inputs, an address and a numeric
value, and deposits the value in the byte specified by the
address.

These commands are useful for communicating with
special-purpose I/O devices, especially when the facility
supplied by OUTDEV is insufficient. Needless to say,
.DEPOSITing into arbitrary memory locations can
cause Logo to crash or do other unfriendly things.

Note that the addresses used with these commands are
ordinary Logo numbers, which are expressed in base
10, even though it is customary to think of Apple
addresses as written in hexadecimal notation. For many
purposes it would be useful to write a conversion

(^ routine that converts from hexadecimal to base ten.
(One is provided in Terrapin's Utilities II package.)

T e r r a p i n L o g o T u t o r i a l T - 1 9

Technical

That way, you could type, for example

.EXAMINE HEX "9E

rather than

.EXAMINE 158

When Logo is running, the upper 16K "language card
bank" is active. The memory locations $C0B0-$C08F
(49280-49295) contain soft switches for this upper 16K
bank area. You can look at memory locations in this
area using .EXAMINE, but using .DEPOSIT with an
address in this area will cause unpredictable effects.

Writing Your Own Machine-Language Routines

You can interface your own machine-language routines ^^
to Logo by using the .CALL primitive. .CALL takes
two inputs: the first is the address of the routine, and the
second is an integer input that the routine may examine.
The routine may output an integer or output nothing.
The .CALL primitive always requires two inputs,
regardless of whether the user routine chooses to
examine the second one.

.CALL transfers control to the address specified by its
first input. Naturally, before doing this, you should
assemble an appropriate routine and store it at the
address. The available memory for user machine code
begins at $99A0 and extends to $9AA0. You can do the
assembly by hand and store the routine using
.DEPOSIT, but you will find it much more convenient
to make use of the Logo assembler described later in
this section.

T - 2 0 T e r r a p i n L o g o T u t o r i a l

Technical

/■^^\

When your routine begins executing, the page zero
locations NARG1 and NARG1 +1 contains the first
input to .CALL, which is just the address of the routine
itself. NARG1 + 2 and NARG1 + 3 are guaranteed to
contain zero at the time the routine is called. The
routine may use locations NARG1 through ANSN4 + 3
as temporary storage locations, without worrying about
restoring them before returning. These storage
locations are volatile; that is, Logo may change these
locations between successive calls to your routine.
Locations USERPZ through $FF are not used by Logo
and so can be used by your routines as non-volatile,
page-zero storage.

NARG2 through NARG2 + 3 contain the second input
to .CALL, stored as a four-byte fixnum in two's
complement form. Thus .CALL ($ "99AO) 3 would

(^ result in the following values in memory:
NARG2 NARG2+1 NARG2+2 NARG2+3
3 0 0 0
NARGI NARG1+1 NARG1+2 NARG1+3
$ A 0 $ 9 9 0 0

Substituting -1 for 3 would make NARG2 through
NARG2 + 3 contain $FF. To output an integer, store the
integer to be returned (using the above format) in the
four locations with NARG2 through NARG2 + 3, and
jump to location OTPFX2. If the number is stored in
some other set of 4 consecutive page-zero variables
(such as NARGI), load Y with the address and jump to
OTPFIX.

To output the Logo word "TRUE, jump to OTPTRU;
similarly, jumping to OTPFLS will cause your routine

/^ to output "FALSE. To output no value, simply end the
routine with an RTS instruction.

T e r r a p i n L o g o T u t o r i a l T - 2 1

Technical

Here is an example which reads the state of the Open-
Apple key or Button 0 (by addressing the Open-Apple
key's location $C0) and returns "TRUE or "FALSE,
depending on whether the Open-Apple key is pressed.
The code here is written in standard 6502 assembler
format. To use it you will have to assemble it by hand
and deposit the instructions in memory (see the next
section).

ORG $99A0
OAKEY EQU $C061
OTPTRU EQU <see Addresses.Logo
OTPFLS EQU <see Addresses.Logo
APPLEKEY : LDA OAKEY

BMI PRESSED
JMP OTPFLS

PRESSED: JMP OTPTRU

Now you can set the Logo variable APPLEKEY to the
address of the label APPLEKEY and execute this new
"primitive" by typing
.CALL :APPLEKEY 0

(Note that an input is needed, even though it is ignored.)
This will work just like a normal primitive or
procedure—
PRINT .CALL APPLEKEY 0

will print TRUE or FALSE.

When a machine language routine has determined some
error condition that would make it inappropriate to
return to the Logo procedure that called it, it jumps to
PPTTP, which effectively executes the Logo
TOPLEVEL primitive.

^

T - 2 2 T e r r a p i n L o g o T u t o r i a l

/ W ^ ^ \

Technical

The Logo Assembler

The Logo assembler is a 6502 assembler that is written
in the Logo language. The assembler is stored on the
Logo utilities disk in the file ASSEMBLER. (The
ASSEMBLER program in turn reads data stored on the
Logo disk in auxiliary files AMODES and OPCODES.)
To use the assembler, simply read this file into Logo as
you would any normal Logo file and then run a
procedure called SETUP:
READ "ASSEMBLER
SETUP

To assemble a routine, you write the routine in the
format of a Logo procedure, using the Logo editor. For
example, the Open-Apple key example listed earlier
would be written as the procedure:
TO APPLEKEY.CODE

[MAKE "OAKEY $ "C061]
[MAKE "OTPTRU <see Addresses.Logo>]
[MAKE "OTPFLS <see Addresses.Logo>]
APPLEKEY: LDA OAKEY

BMI PRESSED
JMP OTPFLS

PRESSED: JMP OTPTRU
END

Notice that there are differences in syntax between the
input accepted by the Logo assembler and the standard
6502 assembler. The syntax of code for the assembler is
explained later in this section.

Once you have defined the procedure you now assemble
it by typing

T e r r a p i n L o g o T u t o r i a l T - 2 3

Technical
/ ^ ^ ^ f c j .

ASSEMBLE "APPLEKEY.CODE

ASSEMBLE will now assemble the instructions and
place them in the default location ($99AO). Also, any
labels in the code (such as APPLEKEY, above) will
now be defined as Logo symbols. So now you can call
the routine by

.CALL APPLEKEY 0

Using the Assembler to Write I/O Routines
While it is possible to use the .EXAMINE and
.DEPOSIT primitives to operate most peripheral
devices, machine language routines are required for
others. If the peripheral device is one which has a built-
in "driver," then you can use the OUTDEV primitive. ^N
OUTDEV takes as input a slot number 1 through 7 as an
input and directs the Logo character input or output
routines to the device at the specified slot. (OUTDEV 0
directs output to the screen.)

Some devices, however, may require special routines to
handle input and output. If you specify OUTDEV with
an input greater than 8, the input will be interpreted as
the address of a routine in memory that should be called
in place of Logo's regular character input or output
routine.

Many peripherals use a technique called "handshaking"
to assure that the computer does not try to send data to
them (or read data from them) too fast. The following
program will interface Logo to such a device. We
assume that STATUS is the memory-mapped I/O
address on the peripheral card indicating the status of ̂ —.
the device. In this case, bit 7 is high if the device is ready >

T _ 2 4 T e r r a p i n L o g o T u t o r i a l

Technical

/ ^ ^ \

to receive a character. DATA is the address where
bytes to be sent should be stored.
Once you have assembled this routine, you may access
the peripheral by executing OUTDEV :TYOWAIT.
TO CODE

[MAKE "STATUS <address>]
[MAKE "DATA <address>]
TYOWAIT: LDX STATUS

BPLTYOWAIT
STA DATA
RTS

END

A character output routine like this, which is meant to
be called via OUTDEV, should expect that the A

f**^ register will contain the byte to be output. Here is
another example output routine. This one causes all!
characters to be printed as spaces:

TO IOCODE
XCLOUT: CMP#"!

BNE OUTCHAR
LDA # 32

OUTCHAR: JMP COUT
END

Syntax of Input to the Assembler
In order to take advantage of some aspects of the Logo
language, the Logo assembler uses a format slightly
different from most assemblers. Each assembly
language program is stored as a Logo procedure,
although this procedure cannot be executed directly.

f^^ The following paragraphs concisely describe the Logo
assembler format; a study of the examples provided will

T e r r a p i n L o g o T u t o r i a l T - 2 5

Technical

better explain how to write assembly language
programs to interface with Logo.

Labels within the program are indicated by a postfixed
colon. References to page-zero memory locations that
are not indirect-indexed (LDA (FOO ,X)) or indexed-
indirect (LDA (FOO),Y) must have an exclamation
point before the label or expression that is on page zero.
(If you forget the exclamation point, the instruction will
be coded as absolute references, and will occupy one
more byte.) There must be a space following every !
(indicating page-zero reference) or # (indicating
immediate mode), and after every label or reference to
a label. The operand of an instruction may be a word (a
reference to a label), a number, a list, or a single-letter
word beginning with a quote. If the latter case, the
operand is the ASCII value of the letter.

Anything inside a list is evaluated as a regular Logo
expression. If the list is the first thing on the line, it is
not allowed to output a value, and is evaluated for "side-
effect" (label assignment) only. If it is an operand
(follows the name of an instruction), it is expected to
output something. Thus, arithmetic expressions such as
:FOO + 3, where FOO is a label or regular Logo
symbol, may be used provided they are enclosed in
square brackets. Of course, references to the values of
labels inside square brackets must have dots (:) before
them, and spaces have their normal significance. All
labels are Logo variables. DOT is a Logo variable
whose value is the current location being assembled.

The HI8 and L08 procedures, which return
respectively the high and low eight bits of a number, are
also useful inside lists. Use them like this:

~)

s^^th.

T - 2 6 T e r r a p i n L o g o T u t o r i a l

/ ^ ^ \

r^

Technical

LDA # [L08 :S0URCE]
STA ! DEST
LDA # [HI8 SOURCE]
STA ! [:DEST+1]

The $ procedure takes as input a word that is a
hexadecimal number and outputs the number that it
represents. Thus, hex numbers may be included in
programs by placing a call to the $ inside a list. Use theMAKE primitive to assign values to labels.

If you use octal or binary numbers a lot, you might want
to change the value of the Logo word $BASE. This is
the base used by the $ procedure. Changing it to 2 gives
you binary, and so on. You can do this within the source
for an assembly language program with [MAKE
M$BASE2].

You can assemble arbitrary bytes into code by placing
the number on the line with nothing (except perhaps a
label) preceding it.
Here is a simple program in normal assembler syntax:
ORG EQU $99A0
NARG2 EQU $9E
BELL EQU $1C40
PASS: LDA NARG2

CMP #$04
BEQ YES
RTS

YES: JMP BELL
END

And in the Logo assembler syntax:

T e r r a p i n L o g o T u t o r i a l T - 2 7

Technical

TO CODE
PASS: LDA ! NARG2

CMP # [$ "04]
BEQ YES
RTS

YES: JMP BELL
END

! means page zero. Note space after

^

To assemble this program, load in the assembler and
type SETUP and READ "ADDRESSES. The following
will assemble the above program, with a default origin
of $99A0. (To assemble at some other start address,
assign the value to the Logo variable ORG.)
ASSEMBLE "CODE

This will generate a listing file on the screen and deposit
the code in memory. The labels are available as Logo /~*\
symbols for use with .CALL, .DEPOSIT, and
.EXAMINE. To invoke the above routine, type

.CALL PASS 4

to beep the bell, and .CALL :PASS <anything but 4> to
do nothing. This is sort of a secret "password" program.

If you try to assemble long programs, you may run out
of memory. One way to get more memory is to load in
only those instructions that your program uses. In a
fresh Logo, read in the OPCODES file from the utilities
disk and erase the instructions (using ERNAME "BIT,
for example) that you don't plan to use. Then, rewrite
this as the new OPCODES file. (Of course, you should
not do this on the original Logo disk. Save copies of the
original assembler files on an ordinary Logo file disk
and run the assembler using these copies.) ^m^

T - 2 8 T e r r a p i n L o g o T u t o r i a l

Technical

Saving Assembled Routines on Disk

With the DOS primitive, you can save the actual
machine code that the assembler generates. The
following will save your assembled routines in a file
called ROUTINES.

DOS [BSAVE ROUTINES.BIN,A$99A0,L$100]

To load the routines into Logo, type

DOS [BLOAD ROUTINES.BIN]

The BIN is short for BINARY, and might help you
remember that the file is a saved machine-language file.
Keep in mind that in addition to saving the actual

f/Wm^ machine code, you should save the Logo variables that
define the addresses used by .CALL. One way to do this
is to type EDIT NAMES, then exit the editor with
<CTRL> G and execute ERASE ALL. Re-enter the
editor by typing just EDIT and edit the definitions to
include only the ones you still want. Then exit the editor
with <CTRL> C. Save the file by typing SAVE
"ROUTINES. Then, to reload your routine, type READ
"ROUTINES and DOS [BLOAD ROUTINES.BIN].

/ ^ ^ \

T e r r a p i n L o g o T u t o r i a l T - 2 9

Technical

Example: Generating Music

This section presents an example of an assembly
language extension to Logo. Although Terrapin Logo
for the Apple has no primitives for playing music, you
can use the .CALL feature to interface a machine-
language routine to produce pitches with the Apple II
speaker. {Logo PLUS has a built-in NOTE primitive.)
The speaker produces a narrow pulse each time the
location to which it is mapped, $C030 (49200), is
referenced. Try repeatedly reading this location from
Logo using .EXAMINE. (Due to the way the speaker is
interfaced, depositing in the location has no effect.
Additionally, the speaker generates clicks only on every
other reference. This brings the pitch down one whole
octave, but does not affect the intervals of pitches
played.)

In order to play pitches, a program has to examine this
location many times each second. The number of clicks
produced per second is called the frequency. To make
the pitches sound equally spaced, the ratio of successive
frequencies must be constant; that is, the frequencies
must be in geometric progression. In Western music,
which has twelve pitches to the octave, this constant
must be such that the frequency doubles after twelve
pitches; thus, the ratio of successive pitches in the scale
is the twelfth root of 2, or approximately 1.05946.

Closely related to the concept of frequency is that of
period. The period of a pitch is simply the reciprocal of
its frequency. Given the period, it is possible to play the
corresponding pitch by repeatedly generating a narrow
pulse (click), and then waiting for the period to expire.
The program which does that will have to be written in
machine language, since it must run very quickly. ^]

T - 3 0 T e r r a p i n L o g o T u t o r i a l

/ i ^ ^ * \

Technical

To make Logo play music, we need to write some
procedures. Let's say there should be a procedure called
"PLAY," and that it should take two inputs: a list of
pitches and a corresponding list of durations. The
pitches should be numbers specifying the number of
chromatic steps above or below a center pitch. The
durations should be lengths of time for the note to
sound, with 1 being the shortest, 2 being twice as long,
and so on.

TO PLAY PITCHES :DURS
IF PITCHES = [] STOP
PLAY.NOTE (FIRST PITCHES) (FIRST :DURS)
PLAY (BF PITCHES) (BF :DURS)

END

Even though we're not exactly sure how notes will be
^""^ played, we can assume that PLAY .NOTE actually playsa note (given the pitch number and duration) because

that's what we're going to write it to do.

Since the notes are played by a machine-language
program that requires the period of the pitch, we must
find some way of associating the periods of various
pitches with their representation in the PLAY
procedure. A table would be one good way of doing
this. For each note, there is an entry in the table that
contains the period. We'll construct our table as Logo
words, and have the periods as the things associated with
the names. We'll choose some arbitrary name for this
table, and then have the individual notes be represented
by words that begin with the table name and have the
number of the pitch at the end of the name. So, if we call
the table "#" the period for note number 3 is in the Logo
variable called "#3." We'll assign a special value to

^•n mean rest, and use the Logo variable #R to store this(value, so that "R" will cause a rest in the PLAY
procedure.

T e r r a p i n L o g o T u t o r i a l T - 3 1

Technical

Additionally, it would be useful to be able to specify
notes above or below the center octave in some
convenient notation. We have chosen postfixed plus and
minus signs to indicate different octaves. In inputs to the
PLAY procedure 4 means the fourth pitch above the
center tone. 4+ means the same pitch an octave above it,
and 4- the pitch one octave below. (You can worry
about an appropriate notation for extending the range to
more than these three octaves if you wish.) The
following MAKE.PITCHES procedure associates each
pitch with the proper period. It takes as input the
number of the highest octave and the period of the
highest pitch in that octave.
TO MAKE.PITCHES PERIOD

MAKE.OCTAVE 11 "+ PERIOD
MAKE.OCTAVE 11 " PERIOD * 2
MAKE.OCTAVE 11"- PERIOD* 4
MAKE "#R 16384

END

TO MAKE.OCTAVE PITCH :OCTIND PERIOD
IF PITCH = 0 STOP
MAKE (WORD "# PITCH :OCTIND) PERIOD
MAKE.OCTAVE PITCH-1 :OCTIND PERIOD * 1.0596

END

This is about as far as we can proceed in Logo before we
know the specifics of the implementation of the note-
generating routine. This machine-language routine
should sound a note with a specific period for a certain
length of time. As mentioned before, the way to
generate a tone on the Apple speaker is to cause a click,
wait for the period to expire, and keep doing this until
the note is supposed to be over.

/"•^^^K

~)

T _ 3 2 T e r r a p i n L o g o T u t o r i a l

Technical

The heart of our machine language routine will be a
subroutine called CLICK (listed below). This routine is
called repeatedly with the (16 bit) period in locations
PER.H and PER.L. It copies them to another place so
that they will still be valid next time around CLICK is
called.

One way to cause notes to have a certain duration would
be to call the CLICK routine a certain number of times.
Calling it twice that many times would result in a note
twice as long. That is fine if only one period (pitch) is
used. Unfortunately, the CLICK routine by its very
nature takes a different amount of time for different
periods (i.e., different pitches); therefore, the routine
that plays notes must convert the actual duration to the
number of clicks to generate.

(If we pick a base pitch, and scale the durations of all
other pitches from that one, our problems will be
solved. The number of times to call the CLICK routine
for a given duration and period is :DURATION *
(:B ASE.PERIOD / :PERIOD). This scaling is called
normalization. It is much easier to do the required
multiplication and division in Logo than in machine-
language, so we'll calculate this scaling factor in Logo.
The machine-language routine will take this number as
an input, and call the CLICK routine that many times.
Here is the entire machine-language program for
playing notes:
TO MCODE
[MAKE "SPKR $ "C030]
[MAKE "DUR.L :NARG2]
[MAKE "DUR.H :NARG2+1]
[MAKE "PER.L :NARG2+2]

^ m s [M A K E " P E R . H : N A R G 2 + 3]([M A K E " C O U N T . L : U S E R P Z]

T e r r a p i n L o g o T u t o r i a l T - 3 3

Technical

[MAKE "COUNT.H :USERPZ+1]
[(PRINT [STARTING ADDRESS:]
T O N E : L D A I D U R . L

ORA I DUR.H
BEQ EXIT
LDA ! DUR.L
SEC
SBC # 1
STA
LDA
SBC
STA
JSR
JMP

E X I T : R T S
C L I C K : L D A

STA
LDA
STA
BIT
BVS
LDA

PDLOOP: LDA
ORA
BEQ
LDA
SEC
SBC
STA
LDA
SBC
STA
JMP

[(PRINT "LENGTH: DOT
END

:ORG)]

;A duration of 0 means no note.

#
I DUR.L
I DUR.H
0
I DUR.H
CLICK
TONE

PER.L
COUNT.L
PER.H
COUNT.H
COUNT.H

PDLOOP
SPKR
! COUNT.L
! COUNT.H
EXIT
! COUNT.L

;Click

#1
I COUNT.L
! COUNT.H
O ;propagate carry
I COUNT.H
PDLOOP

:ORG "BYTES.)]

T-34 Terrapin Logo Tutorial

Technical

/ _ ^

The loops that make up the body of the CLICK and
TONE routines both have an interesting property:
Every iteration takes the same amount of time as every
other. Some methods of writing these loops would have
them run faster or slower when DUR.H (or PER.H) was
0. Those methods would cause durations of 400 clicks
not to be twice as long as durations of 200.

Note that in the CLICK routine there are some
instructions that are outside the loop, and are executed
once for each period of the tone. The time they take has
an effect on the pitches produced. It is just like adding a
small amount to every period. To counteract this, we
subtract a small amount from each period. This factor is
the FUDGE constant.

Some method of interfacing the machine-language
routine to the Logo procedures is needed. The .CALL
primitive is provided for just this purpose, but allows
passing only one input. What we need is a way to pass
both the period (PER.H and PER.L) and the duration
(DUR.H and DUR.L). A careful look will show that this
adds up to 32 bits, which is the number of bits .CALL
can pass to the machine-language programs it calls. If
we arrange memory locations so that DUR.L/DUR.H
are the low two bytes of the input to .CALL, and
PER.L/PER.H the high two, the following procedure
will give the two inputs to machine-language routines:

TO .CALL2 :ADDR :INPUT1 :INPUT2
.CALL :ADDR (ROUND :INPUT2) + (ROUND

:INPUT1)* 65536
END

Note the use of the ROUND primitive. Were it not
^■"n called, non-integer periods would cause the result of the

multiplication not to be a multiple of 65536, interfering

T e r r a p i n L o g o T u t o r i a l T - 3 5

Technical

with the duration. The PLAY.NOTE procedure is a
combination of this procedure and the normalization
step mentioned before. (The three inputs to .CALL.2
are put on separate lines below, to make them more
readable.)

TO PLAY.NOTE PERIOD DURATION
MAKE "PERIOD THING (WORD "# PERIOD)
.CALL2 TONE

PERIOD-PUDGE
(DURATION * :BASEPERIOD/ PERIOD)

END

The Music demonstration program

There are two music-related files on the Utilities Disk.
One is a Logo file called MUSIC, and the other is a file ^^
of saved machine-language routines called MUSIC.BIN. ^)
To try out the music demo, type READ "MUSIC and
SETUP. All the procedures shown here are included.
See also the Music and Utilities chapters for more
information.

Useful Memory Addresses

This section contains brief descriptions of addresses in
the Logo program that serve as "hooks" for modifying
Logo with .EXAMINE and .DEPOSIT and for
interfacing assembly language programs to Logo as
described earlier. The actual values of the addresses are
contained in a file called ADDRESSES that is included
on the Logo utilities disk. Beware that the actual values
of these addresses may change with new releases of
Logo. Executing READ "ADDRESSES in Logo will
define the addresses as normal Logo variables whose
values are integers. (Comments in the file also give the

/^^^k.

T _ 3 6 * T e r r a p i n L o g o T u t o r i a l

r^
Technical

values of the addresses in hexadecimal notation.) When
using an address, it should be preceded with the
character: as in .EXAMINE :EPOINT.

Page zero locations:
EPOINT Location of the current character in the

edit buffer. Used by the editor and the
EDOUT routine.

ENDBUF The address of the last character in the
edit buffer, plus one. The disk saving
routines (see SAVMOD) save from
$2000 to the address in this location.

SAVMOD If the contents of this location is 0, READ
and SAVE work normally. If it is non
zero, SAVE saves whatever is in the edit
buffer (which can be text other than
procedures and names) and READ reads
a file into the edit buffer from disk, but
doesn't evaluate it.

BKTFLG If this location contains 1, then Logo
attempts to print out objects in a manner
such that they can be read back in. This is
useful when you are printing to the
EDOUT device. All lists will be printed
with brackets around them; none will be
printed in "sentence" form and single-
quoted words will be printed with their
single quotes. PO NAMES will print out
Logo variables and their values with
MAKE "VARIABLE 3 instead of
"VARIABLE is 3.

/^^\

Terrapin Logo Tutorial T-37

Technical

NOINTP Controls the action of the special
"interrupt" characters <CTRL> F,
<CTRL> G, <CTRL> S, <CTRL> T, and
<CTRL> W. If the location contains zero
(the default), these keys have their
normal action in draw and nodraw mode.
If it contains 1, these characters have no
special meaning, and will be recognized
by READCHARACTER. <CTRL> Z and
<CTRL> SHIFT-M are still enabled. To
disable them also, deposit 255 in
NOINTP.

CH, CV These locations contain the current
cursor location, in columns and rows,
respectively. .EXAMINE :CH outputs
the current horizontal cursor position.
See the CURSOR primitive.

OTPDEV Contains the address of the routine
currently being used for character
output.

INPDEV Like OTPDEV, but for character input,

USHAPE Pointer to user-defined turtle shape. See
the shape-editing section.

SSIZE Shape size for turtle or user shapes.
Default =1.

INVFLG Determines whether characters will be
white-on-black (default, contents = 255),
black-on-white (contents = 0), or flashing
(contents = 64).

^

NARG2 Second input to .CALL. Four bytes.

T-38 Terrapin Logo Tutorial

Technical
i _]

/ i m \

NARG1 First user-available temporary location.
All memory from here to ANSN4 + 3 is
available for user routines.

ANSN4 Last user-available temporary location.
This and the next three bytes are free.

USERPZ First user-available permanent page zero
location. From this location to $FF is not
used by Logo.

HIMEM (.EXAMINE :HIMEM) + 256 *
(.EXAMINE :HIMEM +1) outputs the
highest address available for user
machine-language programs. It is set by
the DOS command MAXFILES 1 to
$9AA5.SeeV_

Other useful addresses:

/"^^\

OTPFX2 Jumping to this address will cause
.CALL to output the integer stored in
NARG2 through NARG2 + 3.

OTPFIX Like OTPFX2, but returns to Logo with
the value of the integer stored in the four
successive bytes starting with the page-
zero location pointed to by the Y register.

OTPTRU Jump to this routine to output "TRUE.
OTPFLS Output "FALSE.
GETRM1 Loading from or storing to this location

twice, e.g., LDA GETRM1, LDA
GETRM1, enables Logo locations in
extended memory and disables Monitor
ROM.

Terrapin Logo Tutorial T-39

Technical
s^^y-—^,?ay^^^^ ■ ■: 1 •-*■' i *#?$ ̂V/̂ -̂ .̂ :̂̂ ;;-̂ .:̂ ;̂̂ !̂ ^ -̂ >̂>| ■■>, y, ̂ ',

KILRAM Referencing this location enables the
Apple monitor ROM. It is enabled during
.CALL execution unless explicitly
disabled.

~ *)

PPTTP An alternate exit for user machine-
language routines. Jumping to this
address runs the Logo primitive
TOPLEVEL. It is useful to return to
Logo in this manner when some error
condition has occurred, making it
inappropriate to continue executing the
.CALLing procedure.

COUT Logo's normal screen character-output
routine. Prints the character in the A
register on the screen.

EDOUT Routine to place the character in the A
register in die edit buffer. Deposits A in
location pointed to by EPOINT and
increments EPOINT. Returns without
doing anything if EPOINT is greater than
$3FFF. Can be used with OUTDEV to
cause Logo to place text directly in the
edit butter.

^

PNTBEG Routine to reset EPOINT to beginning of
the edit buffer. Use before outputting to
the buffer (with OUTDEV :EDOUT) the
first time.

ENDPNT Routine to set ENDBUF to EPOINT. Use
when finished printing to the buffer. See
PNTBEG, EPOINT, ENDBUF.

T-40 Terrapin Logo Tutorial

Technical

BELL Routine to beep the bell. Use PRINTl
CHAR 7 to beep from Logo.

HOME Homes the cursor and clears the screen.

CLREOP Clear from cursor position to end of
screen.

SCROLL Scroll.

CLREOL Clear to end of line.

FILLEN Contains length of last file loaded.

FILBEG Start address of last file loaded.

VZZZZZ (.EXAMINE :VZZZZZ) + 256 *
.EXAMINE:VZZZZZ +1 outputs the
lowest address available for user machine-
language programs. Although this
address may be below $99A0, you should
not place code in the intermediate region,
since future releases of Logo may use that
area of memory.

^ • n

Terrapin Logo Tutorial T-41

Technical

Miscellaneous Information

Using the Logo System as a Text Editor
The Utilities chapter provides information on the use of
the TEXTEDIT file. The following discussion is a
more technical analysis of the program.

The SAVE primitive normally saves the names and
procedures in the workspace by placing them in the edit
buffer, and then saving the buffer on disk. If you want
to write arbitrary text on disk to be loaded back into the
edit buffer without being evaluated, you can set the
"save mode" flag; it controls the action of READ and
SAVE.

Normally the memory location SAVMOD containszero. When you deposit any non-zero number, SAVE
will save the current contents of the edit buffer (rather
than saving workspace), and READ will not evaluate the
edit buffer after reading it in from disk.

Nothing in Logo but GOODBYE (or changing the
SAVMOD contents to 0) resets this flag. The actual
address of the flag may be found in the file
ADDRESSES on the Utilities Disk, which can be
accessed by typing READ "ADDRESSES. This should
be done before creating the text in the edit buffer, or it
will be lost. Exit the edit buffer by presing <CTRL> G.
Then, before saving the file, you should type
.DEPOSIT :SAVMOD 1

If you are going to use the Logo procedure editor as a
text editor for an entire session, you might want to type
this in at the beginning. If you should want to read or "^

T - 4 2 T e r r a p i n L o g o T u t o r i a l

Technical

save some procedures (or names), just type

.DEPOSIT :SAVMOD 0

and things will be back to normal.

To get the file back to work on at a later date, READ
"ADDRESSES from the utilities disk, type .DEPOSIT
:SAVMOD 1, and READ "MYFILE from your own
disk, then type ED followed by a RETURN. Do not type
TO after reading the file or you will start in a new
empty buffer and have to read in the file again.

Printing the Edit Buffer

The following procedures will print the contents of the
^^ edit buffer to the peripheral in slot SLOT. Before using
[s' it, you will need to make ENDBUF have the value listed

in the Logo ADDRESSES file.

If you have been using the Logo screen editor as a text
editor, typing HARDCOPY after typing the <CTRL> G
editor command will print the contents of the edit
buffer.

TO HARDCOPY :SLOT
OUTDEV :SLOT
PRINTMEM 8192 256 * (.EXAMINE :ENDBUF + 1) +

.EXAMINE :ENDBUF
OUTDEV 0

END

TO PRINTMEM FROM :TO
IF FROM > :TO STOP
PRINT1 CHAR .EXAMINE FROM

A P R I N T M E M F R O M + 1 : T O
(^ E N D

T e r r a p i n L o g o T u t o r i a l T - 4 3

Technical

Self Starting Files

There are two methods for creating self-starting files in
Logo.

One method involves the use of the variable name
:STARTUP, which has special meaning in Logo.
Anytime a file is read in, Logo looks for a global
variable: STARTUP. If this variable is present, Logo
will run it. The value of the variable must be a list and
can contain any number of instructions. For example,
to create a file that automatically runs a main procedure
called SETUP, type the following:

MAKE "STARTUP [SETUP]

Then save the file in the standard way. When the file is ^\
read back in, the SETUP procedure will be executed as
soon as all the procedures have been evaluated.

Before the STARTUP variable feature was added to the
language, it was necessary to follow the steps in this next
process, which still might be of interest to some readers.

You can use :SAVMOD to append arbitrary text to the
end of procedures and names to be saved on disk. This is
useful if you have a program that you want to start
automatically every time a certain file is loaded in.

For example, suppose you want a procedure called
SETUP to be run automatically every time you read in
the file called GAME. This can be accomplished by
arranging things so that the command SETUP is
executed automatically each time the GAME file is read
in. To do this, define all the procedures needed for ^^
GAME. Type EDIT ALL to get the entire workspace)

X - 4 4 T e r r a p i n L o g o T u t o r i a l

Technical

/^^*\

into the edit buffer. Then, go to the end of the buffer
(using <CTRL> F) and insert commands you want
executed directly (SETUP, for example). Then, type
<CTRL> G to exit the editor and then type
.DEPOSIT :SAVMOD 1
SAVE "GAME
.DEPOSIT :SAVMOD 0

Now, whenever the GAME file is loaded, the
procedures will be defined and the SETUP instruction
that you appended to the end of the edit buffer will be
executed.

Various System Parameters

This section contains information about this specific
(^ implementation of Logo. Although it is not necessary toknow what is presented here in order to use Logo, the

curious may find these facts interesting and useful.

The Graphics Screen
When pointing straight up, the turtle can go 121 steps
before wrapping around to the bottom of the screen. It
can go 120 steps downward before wrapping around to
the top. It can go 140 steps when pointing the the left,
and 140 when going to the right. If you change the
aspect ratio (see the .ASPECT primitive), then the
allowable vertical range will change, but the horizontal
range will remain the same.
The turtle-graphics screen is stored in memory in the
primary high-resolution graphics page.

/ * \

T e r r a p i n L o g o T u t o r i a l T - 4 5

Technical

Numbers

The smallest number on which Logo can perform
operations is 1N38, and the largest is 9.9999E38. The
largest positive number which is not "floating point'' is
2147483647, and the largest negative is -214783647.
ASCII Values

There is a correspondence between the characters
available in the Logo character set and the numbers 0-
255. The ASCII primitive, if given a word of one letter,
outputs the number associated with that letter. The
CHAR primitive is the inverse, returning a single-letter
word when given a positive integer. The character re
presented by 0 (often called "null") is special in Logo: it
represents the empty word. Just as SENTENCE ignores
empty lists as input, WORD ignores the empty word. It ^"^
is impossible to make a word which contains the empty
word, unless that word is itself the empty word.
The READCHARACTER primitive, abbreviated RC,
reads a key from the keyboard and outputs a single-
letter word. There are certain "interrupt" keys that will
never be output by RC. These are <CTRL> F,
<CTRL> S, <CTRL> T, <CTRL> SHIFT-M,
<CTRL> W, <CTRL> Z, and <CTRL> G. The

functions these keys provide are available whenever
Logo is in draw or nodraw mode.

The following table shows the ASCII values of selected
keys, To find out the ASCII value of any key, type
PRINT ASCII RC, and type the key.

T _ 4 6 T e r r a p i n L o g o T u t o r i a l

Technical

r R W f t ' t ^ ^ '

/^^\

Key ASCII Value
ESC 27
DELETE 127
left arrow 8
right arrow 21
up arrow 11
down arrow 10
space bar 32
Return 13

Sometimes it is useful to be able to disallow <CTRL> G,
or to use some interrupt character for purposes other
than the function to which it is assigned. For these cases,
Logo provides a hook for turning off the special
meanings of all the above mentioned interrupt charac
ters, except for <CTRL> Z and <CTRL> SHIFT-M.

/^ .DEPOSITing 1 in location NOINTP disables interrupt
characters; .DEPOSITing 0 re-enables them. (Warning:
.DEPOSITing 255 in the location will disable all
interrupt characters.)
When interrupt characters have been disabled, the
READCHARACTER primitive will output on any key
pressed (except of course, <CTRL> Z and <CTRL>
SHIFT-M). A typical use of this feature is a system like
the INSTANT program included on the Logo Utilities
Disk. The program could disable interrupt characters
and assign its own meanings to the characters normally
reserved for special immediate actions in Logo.
Another occasion where disabling interrupts is useful is
in procedures which do things which must be undone
before returning to toplevel. If the user presses
<CTRL> G during the execution of a procedure which
temporarily changes OUTDEV to some other device,
all output from then on (until another OUTDEV or
<CTRL> SHIFT-M) would be directed to the alternate

T e r r a p i n L o g o T u t o r i a l T - 4 7

Technical

device. The following procedure, which uses the
NOINTP feature, can be executed without fear of
causing "STOPPED!" or "PAUSE" messages to be sent
to the device.
TO TCMD :CMD :ARG

.DEPOSIT :NOINTP 255
O U T D E V 7 ; d e v i c e i n s l o t 7
(PRINT :CMD :ARG)
OUTDEV 0
.DEPOSIT :NOINTP 0

END

Lke Length
Lines typed into Logo in the line editor may not be
more than 256 characters long (although longer lines
can be created by concatenating names using the
primitive WORD). Additionally, the list that is input to
RUN and REPEAT, and each sub-list in the second
input to DEFINE must abide by this restriction. In
contrast, lines typed in the screen editor (using TO) may
be of any length, as long as it fits in the edit buffer.
Similarly, lines read in from disk files may be of any
length. The edit buffer in Terrapin Logo for the Apple
is 8192 characters long; the Logo PLUS editor will hold
4608 characters.

Storage in Logo
Logo stores procedures much more efficiently than
most other languages. Each procedure is stored as a list
of lines. The lines are lists of other lists and words. Each
word takes up the same amount of space every time it is
used, no matter how many characters it has. Thus, there
is almost no penalty for using long, descriptive
procedure and variable names. (The first time a long ^^

- ^

T - 4 8 T e r r a p i n L o g o T u t o r i a l

/ 9 ^ ^ m \

/ ^ ^ N

/^^\

Technical

name is used, the amount of space it occupies is related
to its length. Every occurrence thereafter occupies 2
bytes, which is a pointer to the complete name. Space
can be saved, therefore, by using a limited vocabulary,
especially when a lot of text is being stored. Use the
procedures in the TEXTEDIT file to display text
without using up workspace.)

(Actually, this implementation of Logo usually stores
procedures as arrays of arrays, since that method takes
half as much space; however, when there isn't enough
contiguous memory, Logo uses the list-of-lists method.
It is possible for the curious to tell how procedures are
stored: If each line is indented one space, the procedure
is stored in the array form. If not, it is stored in the
rarer list form.)

When Logo runs out of storage space, it enters a process
called garbage collection. This simply means that Logo
is finding out what parts of memory are not being used,
and makes a big list of all of them. Then, when Logo
needs to use a memory location, it takes it off of this list.
Since Logo can't do anything else (like run your
procedures) when it is garbage collecting, the process
can interfere with certain programs where real-time
response is important. If this becomes annoying, place
calls to the .GCOLL primitive at natural pauses in the
program.

T e r r a p i n L o g o T u t o r i a l j - 4 9

PPENIDMli l l R

/ ^ ^ \

^m^^ \

ERROR MESSAGES

Error messages are Logo's way of trying to help the
user find errors, those things which Logo does not
understand. They may be misspellings or wrong usage.

The list of error messages, as given here, is divided. In
both parts, capital letters indicate the unchanging part
that Logo types to you; what is in the parentheses will
vary depending on the circumstances. Both parts of the
list are alphabetized according to the first unchanging
word.

The first part of the list includes those messages that
start with different words at different times; here you
must look for that part of the message after the variable
portion.
The second part includes the messages that always start
out the same way.

For Logo PLUS error messages, consult the Getting
Acquainted with Logo PLUS booklet for correct usage
of the commands that relate to the messages you receive.

PARTI

(procedure) DIDNT OUTPUT

Example:
FORWARD SQUARE 5
SQUARE DIDNT OUTPUT

SQUARE FD 100
FD DIDNT OUTPUT

This occurs when Logo cannot find the input for some-

T e r r a p i n L o g o T u t o r i a l A - l

Appendix: Error Messages

thing that requires an input, either a procedure or a
primitive. (It looks at the next object on the line and
complains that it didn't get anything from that object to
use as an input. To produce something that could be
used as an input, that object would have to output it.)

This message usually means that you forgot to type the
input Logo was looking for.

(primitive) DOESNT LIKE (data) AS INPUT

Example:
PRINT 5 * "SIDE
* DOESNT LIKE SIDE AS INPUT

This occurs when you try to do an operation on the
wrong type of data. Here Logo is trying to multiply a ^—^
name (specified by") instead of the value of name '
(specified by:).

(primitive) DOESNT LIKE (data) AS INPUT
IT EXPECTS TRUE OR FALSE

Example:
IF 2 THEN PRINT 5
IF DOESNT LIKE 2 AS INPUT. IT EXPECTS
TRUE OR FALSE

The primitives IF, NOT, ALLOF and ANYOF expect
only expressions which will evaluate to TRUE or
FALSE, such as :X = 3 (which is either true or false).
You probably neglected to type the rest of the test.

^

A - 2 T e r r a p i n L o g o T u t o r i a l

Appendix: Error Messages

(message), IN LINE
(line)
AT LEVEL (level) OF (procedure name)

Example:
THERE IS NO PROCEDURE NAMED FD100, IN LINE
FD100
AT LEVEL 1 OF SQUARE

The (message) here is another error message, with this
larger message pinpointing the location of the error, by
printing the line, level and procedure in which it
occurred.

(name) IS A LOGO PRIMITIVE

Example:
FIRST IS A LOGO PRIMITIVE

Logo reserves the words that are Logo primitives and
does not allow them to be used as procedure names.
Choose another name for your procedure.

(procedure) NEEDS MORE INPUTS
(primitive) NEEDS MORE INPUTS

Examples:
SQUARE NEEDS MORE INPUTS
FD NEEDS MORE INPUTS

SQUARE required more inputs than were used; FD was
used without an input. With a procedure, this can
happen when the second input is negative and is used
without parentheses. The parentheses are necessary to

^*^ distinguish a second input from a single input obtained
by subtracting the second number from the first.

/ ^ * \

T e r r a p i n L o g o T u t o r i a l A - 3

Appendix: Error Messages
'liMMMmmmmm

(arithmetic-operator) NEEDS SOMETHING BEFORE IT

Example:
PRINT / 8
/ NEEDS SOMETHING BEFORE IT

The number to be divided by 8 is omitted.

(primitive) SHOULD BE USED ONLY INSIDE A
PROCEDURE

Example:
OUTPUT SHOULD BE USED ONLY INSIDE A
PROCEDURE

OUTPUT, STOP and GO cannot be used in immediate
mode (top level). They have meaning only in a """"^
procedure.

CANT DIVIDE BY ZERO

Example:
PRINT :X / :Y
CANT DIVIDE BY ZERO

:Y is (no doubt inadvertently) zero. This message
occurs with QUOTIENT, REMAINDER and /. Get
around this by testing: Y to see if it is zero before the
division.

DIRECTORY NOT EMPTY (Logo PLUS only)

You cannot erase a directory that still contains ^"""^
programs or pictures. You will need to erase the files

A _ 4 T e r r a p i n L o g o T u t o r i a l

Appendix: Error Messages

before you can erase the directory. (You can first move
them to another directory with the COPY command.)

DIRECTORY NOT FOUND (Logo PLUS only)

You have used a pathname that includes a directory
name that is not on the current volume. Use
SETPREFIX or SETDISK to switch to another volume,
or check your spelling.

DIRECTORY EXISTS (Logo PLUS only)

You have tried to create a directory using a name of a
directory that already exists. Choose another name for
your new directory.

DISK ERROR

Example:
CATALOG
CATALOG [] - - DISK ERROR

You will get this message when you try to access a disk
with no disk in the disk drive, or try to SAVE to a
protected or unformatted disk. Also, the Language Disk
files cannot be listed with CATALOG.

DISK IS FULL

Example:
SAVE "NEWMUSIC
THE DISK IS FULL

When the disk is full and Logo will not save your
/«n workspace, you have several choices:

1. You can type CATALOG, locate a file you no longer

z^m^

T e r r a p i n L o g o T u t o r i a l A - 5

Appendix: Error Messages

Example:
PRINT 5 ELSE PRINT :C
ELSE IS OUT OF PLACE

need, and erase it with ERASEFILE. (Erase
pictures with ERASEPICT.)

2. You can use another disk that is not full.
3. You can trim the amount you are saving by erasing

procedures from your workspace with ERASE.
You will also receive a DISK FULL message if you try
to save Terrapin Logo programs to a disk that has been
formatted for ProDOS. Terrapin Logo is based on DOS
3.3 and data disks must be formatted for that operating
system to use. Logo PLUS is ProDOS-based. Seethe
Beginning in Logo chapter for instructions for properly
formatting a blank disk for your Logo files.
DISK IS WRITE PROTECTED

You tried to write on a write-protected disk. This
might mean you forgot to remove the Language Disk. ^\
A 5.25" disk is write-protected if the notch on the left
side of the disk (as it enters the disk drive) is covered.

END SHOULD BE USED ONLY IN THE EDITOR

Example:
PRINT 5 END
END SHOULD BE USED ONLY IN THE EDITOR

You have done one of these things:
1. tried to use END in IMMEDIATE mode
2. put END on a line with something else in a procedure
3. put it in the list used by the Logo primitive DEFINE.

ELSE IS OUT OF PLACE

~ i

A _ 6 T e r r a p i n L o g o T u t o r i a l

/ ^ ^ \

Appendix: Error Messages

ELSE has no meaning in this context. It must be used in
an IF.. .THEN.. .ELSE statement.

FILE IS LOCKED

Example:
ERASEFILE "MUSIC
THE FILE IS LOCKED

Locking a file is a way to protect it from inadvertent
erasing. However, do not lock a file you will be
changing; you can READ from locked files, but you
cannot SAVE to them.

The file cannot be erased while it is locked. To unlock a
file on a disk, use FID on the Logo Utilities Disk or the
primitive DOS, in an instruction like:
DOS [UNLOCK MUSIC.LOGO]

Type CATALOG to list the files on the disk. Files with* before them are locked.

FILE NOT FOUND

Example:
READ "NUSIC
FILE NOT FOUND

NUSIC is not a file on the disk in the disk drive. (The
file MUSIC might be.) Check your spelling before
despairing. Type CATALOG to see what IS on the disk.
If you are using Logo PLUS, make sure that the prefix
is set to the directory containing the file you want to use.

T e r r a p i n L o g o T u t o r i a l A - 7

Appendix: Error Messages
« _ - _ _ ^ . , — . . - — _ . . , O T ^

FILE STILL OPEN (Logo PLUS only)

You have tried to open, rename or erase a file that is
already open. Use the command CLOSE to close it.

INVALID FILE NAME (Logo PLUS only)

You have tried to save a file using a name that contains
invalid characters. Filenames must begin with a letter
and can include only letters (A-Z), numbers (0-9) and
periods (.). Try saving the file again with a name that
does not contain other characters. You will also receive
this message if you are using Logo PLUS and try to
catalog a DOS 3.3-formatted disk.

INVALID SHAPE NUMBER (Logo PLUS only)

You have tried to set the turtle's shape to one that has ^\
not yet been defined or with a number greater than 100. '
Use the number of a defined shape, or perhaps read a
different shapes file from the disk.

LINE GIVEN TO DEFINE TOO LONG
LINE GIVEN TO REPEAT TOO LONG
LINE GIVEN TO RUN TOO LONG

You have exceeded the maximum length of a line used
by DEFINE, REPEAT or RUN, which is 256
characters.

MISSING INPUTS INSIDE ()SS

Example:
(FORWARD)
MISSING INPUTS INSIDE ()'S

The procedure or primitive in the () was used with too ^)
f e w i n p u t s . —

A - 8 T e r r a p i n L o g o T u t o r i a l

Appendix: Error Messages

NO PICTURE TO PRINT (Logo PLUS only)

You have given the PRINTSCREEN command, but
have no picture on the graphics screen to print. You
receive this message, rather than having to wait for the
printer to go through the motions of printing a blank
screen.

NO SHAPES AVAILABLE (Logo PLUS only)

You have tried to change the turtle's shape, but no
shapes are available. Try using READSHAPES to read
some from the disk or create some using EDSHAPE.

NO STORAGE LEFT!

You have used up all the storage. The exclamation
(^ mark means that this is very unusual. Erase some

unnecessary procedures. If this doesn't help, SAVE the
workspace and type GOODBYE.
NUMBER TOO LARGE OR TOO SMALL

An arithmetic operation has resulted in a number too
large or too small for Logo, i.e. greater than 1038 or
10"38. Use different numbers.

PROCEDURE NESTED TOO DEEP

You have exceeded the limit for nesting procedures
(which is over 200). This will be rare. Send a copy of
your procedure to Terrapin, Inc. for its museum of the
unusual.

\

T e r r a p i n L o g o T u t o r i a l A _ 9

Appendix: Error Messages

RESULT: (data)

Example:
12 * 10
RESULT: 120

Besides giving you a quick way to calculate, Logo is also
telling you that you have not specified what is to be done
with the results of the computation. This is important to
note if you are intending to use the line in a procedure.

SHAPE TABLE FULL (Logo PLUS only)

The area reserved for user-defined shapes is full,
causing you to lose the shape that was being defined at
the time. When you define a new shape, you will see a
message telling you how much space remains. Careful ^n
use of this information will help prevent you from >
completely filling the shape table space.

STACK OVERFLOW (Logo PLUS only)

This message will occur if you run out of stack space,
where Logo keeps copies of procedures as they are
created during the running of recursive programs. You
may have unwittingly placed the recursive call to the
procedure other than immediately before the END
statement. Read about recursion to determine if your
recursive procedure is written properly. If you have in
fact written the procedure correctly, you have run out
of stack space and should consider alternate methods of
achieving the results you want. This message might also
occur if your are trying to edit a shape that is too large
to be defined (very unlikely to happen).

A - 1 q T e r r a p i n L o g o T u t o r i a l

Appendix: Error Messages
i

v

THE : IS OUT OF PLACE AT (something)

Example:
PRINT X:
THE : IS OUT OF PLACE AT X

The: has no meaning in this position. Logo realizes that
PRINT expects an input, and sees the: which, in the
right place, denotes a variable. You probably meant :X.
THEN IS OUT OF PLACE

Example:
PRINT 5 THEN PRINT 6
THEN IS OUT OF PLACE

THEN has no meaning in this context. THEN must be
used in an IF.. .THEN statement.

THERE IS NO LABEL (whatever you used)

Example:
THERE IS NO LABEL QUAD

You have used GO to a label that is not specified in the
procedure. You can avoid this by not using GO. To fix
it, add the missing label to your procedure.
THERE IS NO NAME (whatever you used)

Example:
PRINT :X
THERE IS NO NAME :X

X has not been defined, or is used only in a procedure

T e r r a p i n L o g o T u t o r i a l ^ _ 1 1

Appendix: Error Messages

and is local to it. This will also occur if you forget to
list the variables in the title line of a procedure.
THERE IS NO PROCEDURE NAMED (what you typed)

Example:
THERE IS NO PROCEDURE NAMED FD100

When Logo does not recognize a primitive, it looks for
a procedure name. Mistyping accounts for most
instances of this message; forgetting to read in the file is
another possibility.
TOO MANY PROCEDURE INPUTS

You have exceeded the limit on procedure inputs (which
is over 200). This will be exceedingly rare. Send a ^-*n
copy of the procedure that generated this message to '
Terrapin, Inc. for its museum.
TOO MUCH INSIDE PARENTHESES

Logo uses this when it cannot figure out some
parenthesized expression. Interior parentheses may be
incorrectly placed, or the number of opening and
closing parentheses may not be the same.
TURTLE OUT OF BOUNDS

Example:
FD 200
TURTLE OUT OF BOUNDS

In NOWRAP mode, the turtle would go off the screen if
it moved, so it doesn't move.

A _ ! 2 T e r r a p i n L o g o T u t o r i a l

Appendix: Error Messages

UNRECOGNIZED DOS COMMAND
(Terrapin Logo only)

Example:
DOS [TICKLE]
[TICKLE] -- UNRECOGNIZED DOS COMMAND

Either the file name specified in a READ or SAVE
command is invalid, or an invalid command was used
with the Logo DOS primitive.

VOLUME NOT FOUND (Logo PLUS only)

You have used a pathname that includes the name of a
volume that is not currently in a disk drive. Use the
ONLINE command to see which volumes are available.

(^ If you begin a pathname with a slash, Logo PLUS
assumes the first name to be that of a volume name.
Remove this initial slash if this is not the case.

YOU DONT SAY WHAT TO DO WITH (data)

Example:
YOU DONT SAY WHAT TO DO WITH 25, IN LINE
:SIDE * :SIDE
AT LEVEL 1 OF SQUARE

The line is missing a command such as OUTPUT,
PRINT, FORWARD, etc. This corresponds to
RESULT: in immediate mode. Add the missing
instruction (in the example, perhaps PRINT) to the line.

T e r r a p i n L o g o T u t o r i a l A - 1 3

Appendix: Editing

EDITMODE

USE OF CONTROL CHARACTERS
FOR EASE IN EDITING
The EDIT mode discussion in the Technical chapter
includes a listing of the keyboard editing commands.

~ * \

The <GTRL> key is used like the <SHIFT> key. Hold
it down while you type the character indicated.
(<CTRL> N: hold down <CTRL> and type <N>.)

Moving the Cursor
These commands move the cursor without changing the ̂ "N
text.

Arrow Keys The Left Arrow moves the cursor to the
left, and, if it is at the beginning of a
line, up to the end of the previous line.

The Right Arrow moves the cursor to
the right, and, if it is at the end of a line,
down to the beginning of the next line.

The Up Arrow moves the cursor up to
the line above. (Apple 11+ owners use
<CTRL> P.)

The Down Arrow moves the cursor
down to the next line. (Apple 11+
owners use <CTRL> N.)

<CTRL> A Moves the cursor to the beginning of the
line.

^

A-14 Terrapin Logo Tutorial

^ m m t ^ - m ^ m * * Appendix: Editing•■•>&'*■?*#$*&*/]>

<CTRL> E END: Moves the cursor to the end of the
line.

<CTRL> F FORWARD: When editing more than
one screenful of text, moves the cursor
one screenful forward, or to the end of
the buffer, whichever comes first.

/ " ^ ^ N

<CTRL> B BACK: When editing more than one
screenful of text, moves the cursor one
screenful back, or to the beginning of the
buffer, whichever comes first.

<RETURN> typed at the end of a line: moves the
cursor to the next line.

Moving the Text

These commands move the text without changing it or
changing the position of the cursor in the text.

<RETURN> typed in the middle of a line: moves the
cursor and the text after it on the line to
the next line.

/ ^ ^ \

<CTRL> O OPEN: Opens a new line at the cursor
position. The cursor remains on the open
line. Equivalent to typing <RETURN>
<CTRL> P. Use it to add new lines in
the middle of a procedure.

<CTRL> L Scrolls the text so that the line with the
cursor is in the middle of the screen.
Useful for seeing a particular sequence
completely on the screen.

Terrapin Logo Tutorial A-15

Appendix: Editing
/^^^\

?_im fte_#

These commands delete text. Deleted text is not recov
erable. When text is deleted within a line, the rest of
the line moves to the left.

 Each stroke of the (<ESC>) key
deletes the character to the left of the
cursor. used at the beginning of
the line deletes the <RETURN> from
the previous line, and joins the two lines.

<CTRL> D DELETE: Deletes the character under the
cursor. When used at the end of a line
<CTRL> D deletes the <RETURN>.

<CTRL>X Deletes from the cursor to the end of the
line. If the cursor is at the beginning of
the line, <CTRL>X kills the whole line.

Restoring Text

<CTRL> Y YANK: Recalls the most recently de
leted line. This feature is especially use
ful when you want to move a line to a
different location in the procedure.
Also, if you are writing a procedure
with several similar lines, try this trick:
type the first line, delete it, and then re
store it several times. Then you can
make the minor changes necessary in
each line.

- ^

A-16 Terrapin Logo Tutorial

Appendix: Editing
/*^^N

LemwMgEDETMode

<GTRL> C COMPLETE: Exits EDIT mode with
changes intact. Use it when you complete
a procedure or changes to a procedure.

<CTRL> G GONE: Exits EDIT mode without making
any changes to your procedure. Use it
when you change your mind about mak
ing changes or have just done a lot of
typing without realizing you were still
in EDIT mode.

/^^\

When using Logo as a text editor,
<CTRL> G is the only way to exit from
the editor.

Terrapin Logo Tutorial A-17

Appendix: Procedures

^

GMAPHICS CHAPTEM
Turtle Driving Projects

1. through 4. Screen size:

Hint: type <CTRL> F to see when the whole turtle
goes off the edge and appears at the other edge of the
screen. Type <CTRL> T to see the whole list of num
bers (distances). Add up the numbers (or tell Logo to:
100 + 50 + ...), type DRAW and type FD (the total
number) to check it out.You could also say FD 100 +
50 + ..., but you would not know what it totalled.

3. and 4. Diagonals:

To get to the first corner: use half the distance across
(from 2) to get to the edge, and half the distance down
to get to the bottom. Write down this list of instructions
in case you do not get the true diagonal on the first try.
Then aim the turtle at the opposite corner.

5. Command with a negative number and the equiva
lent:

TryFD-20andBK20

6. Square examples (Type <RETURN> only where
indicated):

1) FD100 RT90 <RETURN>
Ty p e a s o n e l i n e < C T R L > P < S PA C E > < C T R L > P

<SPACE> <CTRL> P <RETURN>

/*"̂ ^̂ \

/<^^%H.

A - 1 8 T e r r a p i n L o g o T u t o r i a l

/^^^\

Appendix: Procedures

2) FD 100
FD100
FD100
FD100

RT 90 <RETURN>
RT 90 <RETURN>
RT 90 <RETURN>
RT 90 <RETURN>

/ ^ • n

3) FD 100 RT 90 <RETURN>
<CTRL> P <RETURN>
<CTRL> P <RETURN>
<CTRL> P <RETURN>

4) FD 100 RT 90 FD 100 RT 90 FD 100
RT 90 FD 100 RT 90 <RETURN>

Square

Rectangle examples:

1) FD 100 RT 90 FD 50 RT 90 <RETURN>
<CTRL> P <RETURN>

(Why does it take only one repetition for the rectangle
but three for the square?)

2) FD 100 RT 90 <RETURN>
FD 50 RT 90 <RETURN>
FD 100 RT 90 <RETURN>
FD 50 RT 90 <RETURN>

r^

Terrapin Logo Tutorial A-19

Appendix: Procedures
I V?-N"

~ i
Type as one line, with only the one <RETURN>:

3) FD 100 RT 90 FD 50 RT 90 FD 100
RT 90 FD 50 RT 90 <RETURN>

__

Rectangle

These instructions leave the turtle in its starting posi
tion, which is a very good idea. Keep it in mind when
you write procedures. It makes it easier to plan how
one procedure follows another when you want to use
several, as in drawing something that requires both a
square and a triangle.

7. Some straight line initials (<RETURN> is assumed
after each line):

^

L: LT90FD50RT90FD100
I: FD 100
V: LT 15 FD 100 BK 100 RT 30 FD 100
T: FD 100 LT 90 FD 25 BK 50
Y: FD 50 LT 30 FD 50 BK 50 RT 60 FD 50

^

A-20 Terrapin Logo Tutorial

> # i ^ \

Appendix: Procedures

z^*\

Initial Y

These instructions leave the turtle at the end of the
initial. Later the tutorial will tell you how to move the
turtle without leaving a track. (See section which in
cludes PENUP and PENDOWN.)

Procedure P_ ©/°© cfe

1. Trackless SETUP:

TO SETUP
DRAW
PU
LT90
FD140
RT90
BK 110
PD
FULLSCREEN

END

/W^^\^

Terrapin Logo Tutorial A-21

Appendix: Procedures

gives the same final result as

TO SETUP
DRAW
LT90
FD 140
RT90
BK 110
cs
FULLSCREEN

END

Use PU / PD to avoid having to get rid of the track.

2. Design with MOVE repeated:

z*^^^^.

TO MOVE TO MOVEIT
FD 100 REPEAT 24 [MOVE]
RT15 END
BK80
RT25

END

3. A four-sided figure:

TO FOURSIDE
REPEAT 2 [FD 60 RT 30 FD 60 RT 150]

END

^

FOURSIDE RECTI

A-22 Terrapin Logo Tutorial

Appendix: Procedures

/^^^^
ga&6____i_i :r.■■■.:-•>- ~*r-a

/ ^ ^ N

4. Rectangles:

TO RECT
REPEAT 2 [FD 100 RT 90 FD 50 RT 90]

END

TO RECTI
REPEAT 2 [FD 110 RT 90 FD 10 RT 90]

END

5. Setup and a rectangle:

SETUP
RECT

SETUP
RECTI

/^^ \
6. REPEAT, a shape, and a turn:

TO HOTPAD
REPEAT 12 [FOURSIDE RT 30]

END

TO WINDMILL
REPEAT 4 [RECTI RT 90]

END

k1 >
1

HOTPAD WINDMILL

Terrapin Logo Tutorial A-23

Appendix: Procedures

Pimmcis UsSmm Shmmes

1. A square in each corner of the screen:

TO CORNER.SQ TO SETUP
SETUP PU
SQUARE LT90
PU FD140
FD200 RT90
PD BK 110
SQUARE PD
PU END
RT90
FD220
LT90 TO SQUARE
PD REPEAT 4 [FD 30 RT 90]
SQUARE END
PU
BK200
PD
SQUARE

END

TO FOUR.SQ
SETUP
REPEAT 4 [SQUARE PU FD 230 RT 90 PD]

END

^

CORNER.SQ ~ i

A-24 Terrapin Logo Tutorial

/ " • ^N

Appendix: Procedures

/ " ^ ^ N

/"^*\

Note how in the first version, the turtle walks around
the screen getting to the location of the closest corner,
while in the second version it starts each square from
the corner. It is always more elegant and more under
standable if you can figure out a pattern and repeat it.

2. Keeping that in mind, let's see what would draw a
square and place the turtle in position to draw another
in a row.

SQUARE RT 90 FD 30 LT 90 would do it,

TO ROW.SQUARE
REPEAT 3 [SQUARE RT 90 FD 30 LT 90]

END

and, if the turtle turned LT 90 first, so would

SQUARE FD 30

TO ROW.SQUARE.LEFT
LT90
REPEAT 3 [SQUARE FD 30]

END

Lengthening the distance forward would produce a
row of separated squares.

ROW.SQ

Terrapin Logo Tutorial A-25

Appendix: Procedures

^

3. Tower of squares:

TO SQUARE.TOWER
LT90
ROW.SQUARE

END

TO SQUARE.TOWER.LEFT
RT90
ROW.SQUARE.LEFT

END

r-<

SQUARE.TOWER

4. A leaning tower:

TO LEANING.TOWER TO BASE
BASE RT90
SQUARE.TOWER FD30

END LT105
FD10

END

A-26 Terrapin Logo Tutorial

Appendix: Procedures
/•^•^

Discover the distances in a procedure like BASE by
trying different ones.

/ H ^ ^ \

LEANING.TOWER

5. A window with four panes:

TO WINDOW
REPEAT 4 [SQUARE LT 90]

END

WINDOW

Terrapin Logo Tutorial A-27

Appendix: Procedures

6. Square

1) TO SQ2
FD30
RT90
FD30
RT90
FD30
RT90
FD30
RT90

END

2) TO SQ3
REPEAT 4 [FD30 LT90]

END

7. Analyzing the problem of drawing a triangle:

Decisions (as described in the text):

1. Sides will be 30 steps.
2. Have to try a few different numbers for the turn
3. Want 3 sides

TO TRI
REPEAT 3 [FD 30RT 120]

END

8.1—4 using triangles:

(1) A triangle in each corner of the screen: Substitute
the triangle procedure for the square procedure (and
change the name):

A - 2 8 T e r r a p i n L o g o T u t o r i a l

/^^^\
Appendix: Procedures

TO FOUR.TRI
SETUP
REPEAT 4 [TRI PU FD 230 RT 90 PD]

END

/^^\

TO CORNER.TRI
SETUP
TRI
PU
FD200
PD
TRI
PU
RT90
FD220
LT90
PD
TRI
PU
BK200
PD
TRI

END

FOUR.TRI CORNER.TRI

/^^*s
Notice that the two procedures produce different
results with triangles. The orientation of a triangle
makes a difference.

Terrapin Logo Tutorial A-29

Appendix: Procedures

(2) A row of triangles:
Turn LT 90 (or RT 30) first to lay the triangle down to
make it easier to connect the triangles.

TO ROW.TRI
LT90
REPEAT 3 [TRI FD 30]

END

TO ROW.TRI.RIGHT
RT30
REPEAT 4 [TRI RT 60 FD 30 LT 60]

END

^

ROW.TRI

In the first, the turtle is heading in the direction of the
first side when it starts out. In the second, it has to turn
each time to head in the right direction. Which is easier
to understand? Try to make your procedures as simple
as possible.

(3) A tower of triangles:
There are several choices:
1) Turning the row of triangles will produce a tower

of triangles balancing on their points.
2) Drawing another row, fitted into the first, will

produce a tower with triangles pointing in oppo
site directions, either balanced on a point,

• ^

A-30 Terrapin Logo Tutorial

r*fl?fl •■■■ >»:5̂«y-'̂jj?T"={ '.»■■•■ .■ ■̂>_v__
Appendix: Procedures

3) or with a base.
4) Drawing triangles with each base balanced

on the point of the one below requires a new
procedure.

r^

/ ^ ^ \

TO TRI.T0WER1 TO TRI.T0WER2
RT90 RT90
ROW.TRI ROW.TRI

END RT60
FD30
RT120
RT90
ROW.TRI

END

TRI.TOWERl TRI.TOWER2

TO TRI.T0WER3: Add to 2) (before END)
FD 15
RT90
FD30

FD 30 is slightly too long. Adjust it by trial.

TO TRI.T0WER4
LT90
REPEAT 3 [TRI RT 60 FD 30 LT 60 BK 15]
TRI

END

Terrapin Logo Tutorial A-31

Appendix: Procedures

~)

TRI.TOWER3 TRI.TOWER4

(The REPEAT statement must be typed as one line,
with only one <RETURN>, at the end.) Note that the
turtle draws the triangle, turns and moves to the top,
then turns again and backs into position to draw the
next one.

(4) A leaning tower of triangles:
Turn turtle and draw either ROW.TRI,
TRI.TOWER or TRI.TOWER2.

9. Designs using FOURSIDE:

NOTE: These designs were named after they were
drawn.

1) TO PROPELLER
REPEAT 2 [FOURSIDE RT 180]

END

2) TO BOW.TIE
LT105
REPEAT 2 [FOURSIDE RT 180]

END

3) TOTRI.PROP
REPEAT 3 [FOURSIDE RT120]

END
^

A-32 Terrapin Logo Tutorial

Appendix: Procedures

4) TO PINWHEEL
REPEAT 4 [FOURSIDE RT90]

END

V . X ,
$i^ T V

BOW.TIE PINWHEEL

r^
5) TO FIVE

REPEAT 5 [FOURSIDE RT 72]
END

6) TO SUPER.PINWHEEL
REPEAT 6 [FOURSIDE RT 60]

END

7) TO BIRD
PINWHEEL
SUPER.PINWHEEL

END

SUPER.PINWHEEL BIRD

Terrapin Logo Tutorial A-33

Appendix: Procedures

8) TO FLEUR
REPEAT 9 [FOURSIDE RT40]

END

9) TO HOTPAD
REPEAT 12 [FOURSIDE RT 30]

END

~)

10) TO FLOWER
REPEAT 18 [FOURSIDE RT20]

END

FLEUR FLOWER

11) TO MUM
HT
REPEAT 36 [FOURSIDE RT 10]

END

12) TO SUN
HT
REPEAT 72 [FOURSIDE RT5]

END

^

A-34 Terrapin Logo Tutorial

Appendix: Procedures

MUM

r
SUN SUN

Except for BIRD, these are all essentially the same
procedure, with a different turn. But see what different
designs they are! HT (HIDETURTLE) makes the draw
ing go faster.

Terrapin Logo Tutorial A-35

Appendix: Procedures
''. \'rvi .J.-*,S'^-".---'JJ!*#,«'",t*»'**!

^

Progressively more complicated designs:

Using ROW.SQ:

1) TO NINE
HT
REPEAT 4 [ROW.SQ LT 90]

END

2) TO LACE
HT
REPEAT 12 [NINE RT 30]

END

■ ■ 5 5 5 H■I■> £ < _ " < _ £ ! 1■©•_:_«_*>_ 91sp<_ ;_>_?_*_h_Ir4?_s*^_*i?i&_J&'2--&_3>^<__i
■ _ _ £ _ _ _ _ ■■

~)

N I N E L A C E

Using TRI.TOWER:

1) TOJAG.TRI
LT90
REPEAT 3 [TRI.TOWER1 LT 120]

END

2) TO JAG3
REPEAT 3 [JAG.TRI LT 30]

END

^

A-36 Terrapin Logo Tutorial

^tm^

Appendix: Procedures

J A G . T R I J A G 3

10. A window with 6 triangular panes:

/ ^ ^ N

TO TRI.WINDOW
ROW.TRI
RT120
FD 90
REPEAT 2 [RT 120 FD 60]

END

TO TRI.WIND0W2
REPEAT 6 [TRI RT 60]

END

TRI.WINDOW TRI.WINDOW2

Terrapin Logo Tutorial A-37

Appendix: Procedures

11. Some triangle procedures:

T O T R I T 0 T R I 2
F D 3 0 R E P E A T 3 [F D 3 0 L T 2 4 0]
R T 1 2 0 E N D
FD30
RT120
FD30
RT120

END

Projects: More Shapes
1.—3. Using REPEAT and division:

1) A square

T0SQ1
REPEAT 4 [FD 30 RT 360/4]

END

2) A triangle

TO TRI3
REPEAT 3 [FD 30 RT 360/3]

END

3) A pentagon (5 sides)

TO PENTA
REPEAT 5 [FD 30 RT 360/5]

END

4) A hexagon (6 sides)

TO HEXA
REPEAT 6 [FD 30 RT 360/6]

END

^

A - 3 8 T e r r a p i n L o g o T u t o r i a l

Appendix: Procedures

r^

5) A septagon (7 sides)

TO SEPTA
REPEAT 7 [FD 30 RT 360/7]

END

»°oOO

/ ^ ^ \

Polygons

6) A pentadecagon (15 sides)

TO FIFTEEN
REPEAT 15 [FD 30 RT 360/15]

END

Projects: Sizable Shapes
1. SQUARE4 to draw squares of various sizes:

TO SQUARE4
SQV10
SQV20
SQV30
SQV 40

END

TO SQV :LENGTH
REPEAT 4 [FD :LENGTH RT 90]

END

Terrapin Logo Tutorial A-39

Appendix: Procedures
;^; y.v :^/">'^?-\^4^.^:^^v;^^;-^i^?? ^^wjjjs&ri

~ i

SQUARE4

2. Another set of squares beside the first:

TO TWO.SQUARES
SQUARE4
LT90
SQUARE4

END

TWO SQUARES

3. A procedure using a specific size square:

TO WIND0W1
REPEAT 4 [SQV 30 RT 90]

END

~)

A-40 Terrapin Logo Tutorial

Appendix: Procedures

WINDOWl

4.4 squares, each 25 bigger than the last, with size of
the first square input:

TO BI6GER.SQ :LENGTH
SQV :LENGTH
SQV :LENGTH + 25
SQV :LENGTH + 50
SQV :LENGTH + 75

END

i n

r^

BIGGER.SQ

Projects with Regular Polygons

1. POLY 4100 and POLY 100 4:

TO POLY :LEN :TURNS
REPEAT :TURNS [FD :LEN RT 360/:TURNS]

END

Terrapin Logo Tutorial A-41

Appendix: Procedures
/ ^ ^ ^ ^ v

B
POLY 4100 and POLY 100 4

2. POLY with the same :LEN and varying :TURNS:

~ i

POLY: Same :LEN, varying :TURNS

3. POLY with the same :TURNS and varying :LEN:

POLY: Same :TURNS, varying :LEN

^

A-42 Terrapin Logo Tutorial

/ ^ ^ \
Appendix: Procedures

4. POLY twice, with different :TURNS:

r

Using POLY Twice with Different :TURNS

5. Using POLY to make a triangle:

POLY 100 3

POLY Triangles

6. The largest number you can use for :TURNS:

There is no largest number ... The figure becomes a
rough circle at 15, and after that, larger numbers in
crease the exactness of the curve, but after a while
there is no more visible improvement and the only
effect is to make the turtle go more slowly and the
circle to get larger (with the same length of side). Moni
tors do not have a high enough resolution to distin
guish between a many-sided figure and a circle. The
only reason you might want to be that exact (and slow)

Terrapin Logo Tutorial A-43

Appendix: Procedures

would be for printing the designs on paper. The de
signs shown in the tutorial were drawn with the turn
indicated in the procedures with them. The mascots
(rabbit, elephant, and snail) were drawn with slower
arc procedures for better resolution.

Projects: Curves
1. Circles: 2nd with step twice as big,

3rd with turn twice as big.

DRAW
REPEAT 360 [FD 1 RT 1]
REPEAT 360 [FD 2 RT 1]
REPEAT 180 [FD 1 RT 2]

~)

Circles

2. Circles to right and left:

DRAW
REPEAT 360 [FD 1 RT 1]
REPEAT 360 [FD 1 LT 1]

A-44 Terrapin Logo Tutorial

Appendix: Procedures

/• " "^N

Circles Left and Right

3. To figure out the diameter (distance across) of a cir
cle, turn the turtle 90 and walk it across. You can see
the line better if you type HT (HIDETURTLE).

4. Quarter-circle arc to the right (make it into a proce
dure and call it ARCR90):

REPEAT 360/4 [FD 1 RT 1]

5. Quarter-circle arc with steps twice as big:

REPEAT 360/4 [FD 2 RT 1]

6. Sixth-of-a-circle arc to the left and right (make them
into procedures and call them ARCR60 and
ARCL60):

REPEAT 360/6 [FD 1 LT 1]
REPEAT 360/6 [FD 1 RT 1]

Terrapin Logo Tutorial A-45

Appendix: Procedures

^

r
ARCR90

ARCL60

7. A procedure which uses an arc procedure and
straight lines:

TO VASE
PU
RT90
FD60
LT90
BK30
PD
HT
ARCL60
ARCR60
FD30
LT90
FD20
LT90
FD30
ARCR60
ARCL60
ARCL90
FD20
ARCL90

END

~)

VASE

A-46 Terrapin Logo Tutorial

[W-W-'."-
Appendix: Procedures

Projects: Simple Recursion
1. A recursive procedure that draws a little figure, then

calls itself:

TO FIGURE
FD 60 RT 49 FD 10 RT 80 FD 5 RT 90
FIGURE

END

FIGURE

2. A recursive procedure that uses arcs and lines:

TO FAN
PU
RT20
PD
REPEAT 3 [ARCR 50 60 ARCL 50 90 BK 50 LT 90]
FAN

END

/^* \

FAN FAN

Terrapin Logo Tutorial A-47

Appendix: Procedures
^ ^ j ^ i l ^ V L L _ _ _ _ _ _ _ i _ _ Z 3 /"̂ ^ \̂

3. A recursive procedure using a triangle:

TO MILLWHEEL
TRI
ARCL60
MILLWHEEL

END

MILLWHEEL

4. Stars:

TO STAR TO STAR9
FD 75 RT 144 FD 75 RT 160
STAR STAR9

END END

STAR STAR9

A-48 Terrapin Logo Tutorial

Appendix: Procedures
asimsmmgM

/"^^s

Projects: Changing Inputs
1. SQUARE with a larger increment:

TO SQUARE1 :LENGTH
FD :LENGTH RT 90
SQUARE1 :LENGTH + 15

END

TO SQUARE2 :LENGTH
FD :LENGTH RT 90
SQUARE2 :LENGTH + 25

END

>▶ V

n 1
S Q U A R E l W i t h + 1 5 S Q U A R E 2 W i t h + 2 5

SQUARE with a smaller increment:

TO SQUARE3 :LENGTH
FD : LENGTH RT 90
SQUARE3 :LENGTH + 1

END

TO SQUARE4 :LENGTH
FD :LENGTH RT 90
SQUARE4 :LENGTH +3

END
/^•n

Terrapin Logo Tutorial A-49

Appendix: Procedures

SQUARE with an increment subtracted:
TO SQUARE5 :LENGTH

FD :LENGTH RT 90
SQUARE5 :LENGTH -5

END

TO SQUARE6 :LENGTH
FD :LENGTH RT 90
SQUARE6 :LENGTH -10

END

fc>

n

^

SQUARE5 With-5 SQUARE6With-10

Note what happens when the length of the side be
comes very small and then negative...

3. SQUARE with a slightly different turn:

TO SQUARE7 :LENGTH
FD .LENGTH RT 93
SQUARE7 :LENGTH + 5

END

TO SQUARE8 :LENGTH
FD :LENGTH RT 87
SQUARE8 :LENGTH + 5

END /■"•̂̂ v̂

A-50 Terrapin Logo Tutorial

^^fc\

Appendix: Procedures
gff&i>£l

SQUARE7WithRT93 SQUARE8WithRT87

Now you begin to see some of the power of changing
the input in a recursive procedure.

4. SQUARE with the input changed by multiplication:

r^
TO SQUARE9 :LENGTH

FD :LENGTH RT 93
SQUARE9 :LENGTH * 1.1

END

TO SQUARE10 :LENGTH
FD : LENGTH RT 87
SQUARE10 :LENGTH * 2

END

SQUARE9 With* 1.1 SQUARE10 With * 2

/ ^ ^ N 5. SQUARE, SQUARE1, ... SQUARE10 in both WRAP
and NOWRAP mode.

Terrapin Logo Tutorial A-51

Appendix: Procedures

6. All the SQUARES in WRAP and PC 6 (PENCOLOR
6): The designs will continually change. Sample pic
ture here catches only one moment in the succession
of changes.

/̂ ^^ \̂

A Squaral in Wrap Mode

7. Using a SQUARE procedure with variable input
(such as SQV) in a procedure that draws successively
larger squares.

/ " ^ ^ ^ K

TO LARGER.SQUARES :LENGTH
SQV :LENGTH
LARGER.SQUARES :LENGTH +

END
10

TO SQV rLENGTH
REPEAT 4 [FD :LENGTH RT 90]

END

LARGER.SQUARES ~ * \

A-52 Terrapin Logo Tutorial

Appendix: Procedures

^^^ \

If you wanted to center your squares, instead of draw
ing them with two common sides, you would move
the turtle between squares:

TO LARGER.SQUARES :LENGTH
SQV :LENGTH
PU LT 90 FD 5 RT 90 BK 5 PD
LARGER.SQUARES :LENGTH + 10

END

/^H^^ \

Id
LARGER.SQUARES (Centered)

Note that the turtle turns left, moves the distance of
half the increment, turns right and backs into position,
moving the distance of half the increment again. The
backing up saves an extra turn.

Projects: Testing and Stopping
1. Replacing the 45 in RT 45:

TO DESIGN :TIMES :LENGTH
IF :TIMES < 1 STOP
SQV :LENGTH
RT :TIMES * 4
DESIGN :TIMES-1:LENGTH

END
yW^^\

Terrapin Logo Tutorial A-53

Appendix: Procedures
■^:^^^:^^ m*m^^mim^&7*rmm

^

DESIGN

2. A tower of increasingly smaller squares, number of
squares chosen when procedure is run, with a setup
procedure to start lower on the screen (Type
SET.TOWER, then type TOWER.OF.SQUARES 5 55):

TO TOWER.OF.SQUARES :NUM :LEN
IF :NUM =0 THEN STOP
SQV :LEN
FD :LEN RT 90 FD 5 LT 90
TOWER.OF.SQUARES :NUM-1

END
:LEN-10

TO SET.TOWER
PU BK 100 PD

END

TOWER.OF.SQUARES

A-54 Terrapin Logo Tutorial

Appendix: Procedures

/ ^^ \

After drawing each square, the turtle moves up the
side of the square just drawn, turns, moves half the
size of the increment (so the next square is centered),
and turns again, ready to begin the next square.

3. DESIGN with a variable turn:

TO DESIGN1 :LENGTH :TIMES :TURN
IF :LENGTH < 0 THEN STOP
IF :TIMES < 1 THEN STOP
SQUARE :LENGTH RT :TURN
DESIGN1 :LENGTH :TIMES -1 :TURN

END

DESIGNl

/*H^™\

1. Successively smaller houses:

Begin by designing one house with a variable for a
unit of size, to be determined later. The parts will re
quire some instructions between them for positioning,
but that too can wait. For a start, just describe what
will be in the picture..

Terrapin Logo Tutorial A-55

Appendix: Procedures
vitf>mtfei&Vi..'*.:

TO HOUSE :SIZE
FRONT :SIZE
ROOF :SIZE

END

TO FRONT :SIZE
WALLS :SIZE
DOOR :SIZE
WINDOW :SIZE

END

A
_

rim

HOUSE FRONT

Now is the time to decide the size relationship of the
components. Test each of these to be sure it works cor
rectly before you begin on the interfacing instructions
that make the parts go together.

/"*̂ ^̂ \

TO WALLS :SIZE
SQUARE :SIZE * 3

END

TO ROOF :SIZE
TRI :SIZE * 3

END

TO WINDOW :SIZE
REPEAT 4 [SQUARE :SIZE/2 RT 90]

END

TO DOOR :SIZE
RECT :SIZE * 2

END
SIZE

A-56 Terrapin Logo Tutorial

/^^™\
lartWIBKtefta^V

Appendix: Procedures

WALLS ROOF

WINDOW DOOR

TO TRI .LENGTH
REPEAT 3 [FD :LENGTH RT 120]

END

TO SQUARE :LENGTH
REPEAT 4 [FD :LENGTH RT 90]

END

TO RECT :LEN :WIDTH
REPEAT 2 [FD :LEN RT 90 FD :WIDTH RT 90]

END

/ ^ • S

Now comes the fitting together of the parts.

In each case, the turtle finishes in its starting position.
This makes it much easier to figure out how to get to
where the next part is drawn.

Terrapin Logo Tutorial A-57

Appendix: Procedures

One possible solution:

TO HOUSE :SIZE TO FRONT :SIZE
FRONT :SIZE WALLS :SIZE
FD :SIZE * 3 RT90
RT30 FD :SIZE/3
ROOF :SIZE LT90
LT30 DOOR :SIZE
BK :SIZE*3 PU

END RT90
FD :SIZE * 2

TO SETUP LT90
FULLSCREEN FD :SIZE * 1.5
PU PD
LT90 WINDOW :SIZE
FD 135 PU
RT90 BK :SIZE * 1.5
BK 115 LT90
PD FD :SIZE * 2 + :SIZE/3

END RT90
PD

END

^

SETUP moves the turtle to the lower left corner of the
screen to draw the first house.

Interface Bug in House

A-58 Terrapin Logo Tutorial

Appendix: Procedures
MRMra t tU&U—Hi^ , > I I I I I I I I I IH IH I IP ■■■■I I I IB I I I IW—_W—____——■—

The next problem is the procedure which will use
HOUSE to draw a succession of smaller houses and
stop.

TO H :SIZE
IF :SIZE < 2 STOP
HOUSE :SIZE
PU
RT90
FD :SIZE * 3.4
LT90
FD :SIZE * 2
PD
H :SIZE * .75

END

rThe 3.4,2, and .75 were determined by trial and error,to see what came out the best on the screen.

Now all that remains is to create the procedure
HOUSES which will run the other procedures when
you type HOUSES.

TO HOUSES
HT
SETUP
H30

END

To extend this so that you can determine the size re
duction when you run the procedure, use a variable
instead of the .75:

/ * \

A-59Terrapin Logo Tutorial

Appendix: Procedures

~)

TO H :SIZE :FACT0R
IF :SIZE < 2 STOP
HOUSE :SIZE
PU
RT90
FD .SIZE * 3.4
LT90
FD :SIZE * 2
PD
H :SIZE * :FACT0R :FACTOR

END

TO HOUSES :FACT0R
HT
SETUP
H 30 :FACT0R

END
~)

HOUSES .75

Now you have the option of making larger and larger
houses, defying perspective, but you will need a test
for maximum size to make the procedure stop.

^

A-60 Terrapin Logo Tutorial

Appendix: Procedures
/^^^\

2. A binary tree:

The basic pattern:

TO TREE :LENGTH
RT45
FD :LENGTH
BK :LENGTH
LT90
FD :LENGTH
BK :LENGTH
RT45

END

/"^^\

TREE 20 5

Note that the turtle finishes in its starting position.

If you want to draw another one of these at each tip,
then you must determine when the turtle is at the tip
and call the procedure again. Each FD :LENGTH takes
the turtle to a tip, so it is after each FD that the proce
dure should be called again.

/ ^ ^ \

Terrapin Logo Tutorial A-61

Appendix: Procedures

One way to stop this procedure so it can recurse and
draw the whole tree, is to specify the number of forks:

TO TREE :LENGTH :F0RKS
IF :F0RKS = 0 STOP
RT45
FD : LENGTH
TREE :LENGTH :F0RKS -1
BK :LENGTH
LT90
FD :LENGTH
TREE :LENGTH :F0RKS -1
BK :LENGTH
RT45

END

/"^^^\

TREE180

A tree with successively smaller branches could be
told to stop when :LENGTH reached a certain size:

TO TREE1 :LENGTH
IF :LENGTH < 5 STOP
RT45
FD :LENGTH
TREE1 :LENGTH / 2
BK :LENGTH
LT90
FD :LENGTH

/•"^^^K

A-62 Terrapin Logo Tutorial

Appendix: Procedures

TREE1 :LENGTH II
BK :LENGTH
RT45

END

/^^^\

TO TREE2 :LENGTH
IF :LENGTH < 5 STOP
RT45
FD :LENGTH
TREE2 :LENGTH * .75
BK :LENGTH
LT90
FD :LENGTH
TREE2 : LENGTH * .75
BK :LENGTH
RT45

END

/ ^ ^ N

TREE2 40

Each of these makes a different design. To alter it even
more, consider making it with one side different from
the other, perhaps doubling the length of the branches
or changing the turn.

There is a good discussion of binary trees in LOGO
FOR THE APPLE II, by Professor Harold Abelson,
M.I.T.

Terrapin Logo Tutorial A-63

Appendix: Procedures

3. A fish in a fish in a fish.

First draw one fish, then try it in different sizes to be
sure they will fit together. Then, as in the houses prob
lem, write the procedure which fits them together.

TO FISH :SIZE TO SETUP.FISH
RT30 PU
PU LT90
RARC :SIZE * 3 10 FD100
PD RT90
RARC :SIZE * 3 110 PD
TAIL :SIZE END
RARC .SIZE * 3 110

END

TO FISH.IN.FISH :SIZE TO EYE
IF :SIZE > 40 STOP PU
FISH :SIZE RT90
PU FD40
RARC :SIZE * 3 10 LT90
LT60 FD8
FD :SIZE/3 LT90
RT90 BK10
FISH.IN.FISH :SIZE + 10 RT30

END FD5
END

TO FISHES TO TAIL :SIZE
SETUP.FISH FD :SIZE
FISH.IN.FISH 10 BK :SIZE
EYE RT60

END BK :SIZE
FD :SIZE

END

~)

EYE wanders about to put the turtle in an appropriate)
place for the eye of the smallest fish.

A - 6 4 T e r r a p i n L o g o T u t o r i a l

/^^^N,

/^^*\

Appendix: Procedures

FISHES

Projects Using Random
1. SQUARE3 using FD RANDOM 100 in SQUARESIDE:

TO SQUARESIDE TO SQUARE3
FD RANDOM 100 SQUARESIDE
RT90 SQUARE3

END END

SQUARE3 with RANDOM 100

2. REPEAT using a random turn between 0 and 360:

REPEAT 50 [FD 20 RT RANDOM 360]

Terrapin Logo Tutorial A-65

Appendix: Procedures
/*̂ ^̂ \̂

3. A recursive procedure using a random turn between
90 and 120:

TO WORM
FD 20
RT 90 + RANDOM 30
WORM

END

WORM

To specify a range BETWEEN two numbers, add the
beginning number of the range (here 90) to the amount
of the range (30, for a range of from 90 to 120). The
computer will always choose a number within the
amount of the range (here 30) and add it to the begin
ning number (here 90), to obtain a number within the
specified range (here 90 + 0 to 90 + 30, or 90 -120).

4. Other ranges of turn:

TO WANDER TO WIGGLE
FD2 FD5
RT RANDOM 10 RT -10 + RANDOM 20
WANDER WIGGLE

END END
r " " ^ ^ ^ \

A-66 Terrapin Logo Tutorial

mmm&&m®md Appendix: Procedures

TO VARY
FD 10
RT 120 + RANDOM 30
VARY

END

WANDER WIGGLE

/ ^ ^ V

VARY

n

Terrapin Logo Tutorial A-67

Appendix: Procedures

Mascots: Elephant, Rabbit, Snail

No lions and tigers and bears, but an elephant (that's
for remembrance), a rabbit (denoting speed and
ingenuity), and a snail (go slow... slow... slow).

The arcs used are described in the arc development
section. To use the arc procedures on the Utilities Disk,
change ARCR to RARC and ARCL to LARC in each of
the procedures below.

Elephant

TO ELEPHANT :SIZE
HT
E L E P H A N T E A R : S I Z E ^ ^
T R U N K : S I Z E)
TUSK :SIZE
EYE :SIZE

END

TO TUSK :SIZE
ARCL10*:SIZE70
RT160
ARCR10*:SIZE50

END

TO ELEPHANT.EAR :SIZE
RT160
F D 3 * : S I Z E
ARCR7*:SIZE180
ARCR13*:SIZE90

END

TO TRUNK :SIZE
ARCR 17 * :SIZE 180
A R C R : S I Z E 1 8 0 < — s
A R C L 1 0 * : S I Z E 1 0 0 '
RT180

END
A _ g g T e r r a p i n L o g o T u t o r i a l

n
Appendix: Procedures

TO EYE :SIZE
PU
RT60
ARCL10*:SIZE60
PD
RCIRCLE2*:SIZE

END

O G) G)

Evolving the Elephant

For the mascot elephant, :SIZE = 1.

Rabbit

TO RABBIT TO BODY
HT ARCR 20 60
HEAD LCIRCLE 3.5
ARCL 7.5 90 ARCL 20 60
RT60 ARCR 1.5 180
BODY ARCR 20 60

END LT60
ARCR 50 30
ARCL 50 30
ARCR 1.5 180
ARCR 50 30

END

/ * ^ s

Terrapin Logo Tutorial A-69

Appendix: Procedures

TO EARS TO EAR TO HEAD
EAR ARCR 30 60 EARS
RT150 RT120 ARCL 6 540
EAR ARCR 30 60 END

END END

Evolving the Rabbit

Snail

TO SNAIL
HT
SNAILBODY
SNAILHEAD
RT180
ARCR 5 (270-HEADING)
SNAILFOOT

END

TO POLYARC :SIZE :TIMES
IF :TIMES = 0 THEN STOP
ARCR :SIZE 60
POLYARC :SIZE + 1 :TIMES-1

END

A-70 Terrapin Logo Tutorial

Appendix: Procedures
i*im8&&&S&&&E®̂"•■•.--• ■••>■..-.'.-.->■../ :■"..■.-:...-•■ • v : ■ ■ '. • '••■' '..:■.■- ' ■.* ". ;-::---̂ 7̂-;r/„ >tT::: *v"; ,«*£.•* *M

TO SNAILBODY TO SNAILHEAD
POLYARC 1 15 ARCL 5 475
ARCL 10 60 ANTENNA

END ARCL520
ANTENNA

TO ANTENNA END
ARCR1560
ARCR 1 360 TO SNAILFOOT
PU ARCR 5 40
RT180 LT100
ARCL1560 ARCL 15 90
RT180 ARCL1060
PD ARCR 3 120

END RT60
ARCL 8 90

END
/^^\

__\fli)_

Evolving the Snail

Terrapin Logo Tutorial A-71

■/̂ /*;■'?•
Appendix: Procedures

Procedures for SmvMg Pictures
The illustrations in the Graphics Procedures section
were drawn (2/3 scale) and stored on the disk with the
following procedures:

TO STORE :PROCEDURE TOH
DRAW PU
FRAME HOME
H PD
RUN SENTENCE :PROCEDURE [] END
TURTLE
SAVEPICT PROCEDURE

END

TO TURTLE
LT 90 BK 6
REPEAT 3 [FD 12 RT 120]

END
^

TO FRAME
PU SETXY-90 (-85) SETHEADING 0 PD
REPEAT 2 [FD 160 RT 90 FD 180 RT 90]

END

Example: type

STORE "TOWN

STORE clears the screen, draws the frame, moves the
turtle to the HOME position, then runs the procedure
TOWN. The SENTENCE PROCEDURE [] makes a list
out of the procedure name, so it can be RUN by another
procedure. It turns the command into RUN [TOWN].
(See the chapter on Words and Lists.) The procedure
TURTLE draws a little turtle, since SAVEPICT does ^\
not draw the turtle. SAVEPICT stores the picture on
the disk under the procedure name.

A - 7 2 T e r r a p i n L o g o T u t o r i a l

W^4nrr*ff»5«M«raiF--3i'-: :<
Appendix: Procedures

Here is a set of procedures used to generate droves of
wild animals. This also illustrates a use for SETXY.

TO DROVE :ANIMAL
FULLSCREEN
QUAD :ANIMAL (-90)

END

TO QUAD :PR0C :Y
IF :Y > 90 STOP
LINE (-125) :Y :PR0C
QUAD :PR0C :Y + 45

END

/^^\

/ ™ * ^ s

TO LINE :X :Y :PR0C
IF :X > 55 STOP
PU
SETXY :X :Y
PD
SETHEADING 0
RUN SE :PR0C []
LINE :X + 60 :Y :PR0C

END

To draw a lot of little pictures, type DROVE and the
name of the procedure that draws the picture.
For example, type

DROVE "SNAIL

DROVE of Snails

Terrapin Logo Tutorial A-73

Appendix: Procedures

^

DROVE shows you the whole screen, since the drawing
begins in the lower left corner, and calls QUAD with a
Y value of -90, close to the bottom of the screen.
DROVE is in charge of the whole project.

QUAD tests to be sure you are not going to be drawing
off the top of the screen (Y > 90), then calls LINE with
a value for X (-125) which will start the drawing near
the left edge of the screen. When LINE has finished,
QUAD moves into position for the next line of pictures
and calls LINE again. QUAD uses LINE several times
to draw rows of pictures.

LINE tests to be sure you are not drawing off the right
side of the screen, then takes the beginning value of X
and the value of Y, and moves to that position. LINE
then uses RUN to call the procedure that draws the
picture, and calls itself with a new position to the right
(incremented value of :X, same value of :Y). LINE
draws one row of pictures.

GJ _5l GJ. GJ.
G$ 6$ G). 6$
fy 6$ G^ G^
fy G$. G$. G$.
S$ 6$ 6$ G$

/ " ^ ^ » K

DROVE of Elephants DROVE of Rabbits

A-74 Terrapin Logo Tutorial

Appendix: Procedures

/^^\

Developing an Arc Procedure
It is easiest to develop a circle procedure, then general
ize it to do arcs. Then you can use the arc procedure to
do everything, including circles.

We want a circle procedure which will depend on the
radius, so that we can specify the size by giving the
radius when the procedure is run. We work from the
fact that the circumference of a circle equals the radius
times 2 PI: C = 2 PI (times) R, or, translating for the
computer, C = 2*3.14159*R.

In Logo, every drawing is some combination of steps
and turns, so the circle must also consist of steps and
turns. A circle of a certain fixed size is drawn by

REPEAT 360 [FD 1 RT 1]

The 360 comes from the turn of 1; to turn 360 degrees
with a turn of 1 degree requires 360 turns, or 360/1 =
360.

The 360 might also be said to represent the circumfer
ence, the distance around. We can substitute for it the
equivalent 2 -^3.14159^R. This makes the circumfer
ence depend on the radius, as we wanted.

The turn must also be changed to be a function of the
radius; if we use the same step and turn as before, we
will not have changed the size of the circle. How can
we figure out what the turn should be?

With a turn of 1 degree, we figured out the number of
turns by dividing 360 degrees by that amount, to get

T e r r a p i n L o g o T u t o r i a l A - 7 5

Appendix: Procedures
" " — — ~ " " ^ ~ " ^ ^ ^ ^ ^ ^ ~ ~)

360 turns. If we use the same relationship, we see that
the amount of turn is 360 divided by the number of
turns.

The number of turns in our new model is 2 * 3.14159 * R,
so the amount of the turn will be 360 / 2 * 3.14159 * R.

Our circle statement (type as one line) becomes

Typeasoneline REPEAT 2 * 3.14159 * iRADIUS
[FD 1 RT 360/(2*3.14159* :RADIUS)]

Our circle procedure becomes

TO RCIRCLE :RADIUS
Typeasoneline REPEAT 2* 3.14159* iRADIUS

[FD 1 RT 360/(2* 3.14159* .RADIUS)]
END

Type the REPEAT statement as one line, with only one
<RETURN>, at the end. Substitute LT for an LCIRCLE
procedure.

To change the circle procedure to an arc procedure, we
must change the number of turns to draw the fraction
of the circle the arc represents. How do we figure that
fraction?

A 60 degree arc is 60/360, or l/6th of a circle. The frac
tion of the circle which is any arc then, would be repre
sented by (its size) / 360. If we call its size :DEGREES,
then :DEGREES / 360 would be the fraction of the cir
cle which is the arc of the size :DEGREES. (360/360 =
the circle)

^

^

A - 7 6 T e r r a p i n L o g o T u t o r i a l

Appendix: Procedures

The number of turns would be the fraction of the circle
represented by the arc, times the number required by
the full circle, or

(DEGREES/360)*(2*3.14159*:RADIUS)

The arc procedure would be

TO ARCR :RAD :DEG
Typeasoneline REPEAT (.DEG/360)*(2*3.14159*:RAD)

[FD 1 RT 360/(2*3.14159*:RAD)]
END

Simplifying by doing the arithmetic gives

TO ARCR :RAD :DEG
(* REPEAT .0174532 * :DEG * :RAD [FD 1 RT 57.295827 / :RAD]

END

The circle procedure becomes

TO RCIRCLE :RADIUS
ARCR :RADIUS 360

END

LCIRCLE would use ARCL, the same as ARCR with LT
substituted for RT. If you wanted to be silly, you could
write

TO ARCL :RADIUS :DEGREES
ARCR -RADIUS (-DEGREES)

END

Now all the arc and circle procedures are based on
^•v one, and only one, procedure. Making the radius nega

tive has the effect of making the turn negative, or LT.

T e r r a p i n L o g o T u t o r i a l A - 7 7

Appendix: Procedures
/ " ^ ^ ^ K

To increase the resolution of the picture, really only
desirable when you are going to print a design on pa
per, decrease the size of the step. Replace the original 1
with :STEP and add the variable to the title.

To keep our procedure drawing arcs with the specified
radius, we must multiply the turn by the :STEP and
consequently, divide the number of turns by :STEP,
giving us (name changed to avoid confusion with the
non-variable step version):

TO RARC :RADIUS :DEG :STEP
Typeasoneline REPEAT (.0174532* :DEG *:RADIUS)/:STEP

[FD :STEP RT (57.295827* :STEP) /:RADIUS]
END

Debugging width TRACE, NOTRACE

TRACE allows you to watch the execution of your
procedure line by line. Logo prints a statement, waits
for you to type a character, then executes the statement.
TRACE also tells you when it is starting a subproce
dure, and tells you what the inputs are.

In TRACE mode, type <CTRL> G, as usual, to stop a
procedure. <CTRL> Z will make it PAUSE; type CO
(or CONTINUE) to resume. Type NOTRACE to stop
tracing.

TRACE and NOTRACE may be used in a procedure to
t r a c e j u s t a p o r t i o n o f i t . < ^ * \

^

A - 7 8 T e r r a p i n L o g o T u t o r i a l

r Appendix: Procedures
: : : i

s^m>\

Adding Remarks in Yomr Procedures

When you use descriptive procedure names and vari
able names, and write short procedures and subproce
dures, your need for remarks throughout your proce
dures is lessened, and in many cases, eliminated.

However, for those remarks that simply must go in,
precede them with a semi-colon (;) as in the (not to be
taken seriously as an) example:

TO SQUARE
(^ F D 1 0 0 ; G O E S F O R W A R D 1 0 0

RT90;GOES RIGHT 90
SQUARE;CALLS ITSELF
END

Switching Disk Drives: SETDESK

Occasionally you may want to use more than one disk
drive in your Logo system. Use the SETDISK com
mand to switch back and forth between drives.
SETDISK takes two inputs, a drive number and a slot
number, and causes all subsequent file operations to be
done in that drive. For example, SETDISK 2 6 transfers
control to the second drive in a two-drive system. De
fault is SETDISK 1 6.

T e r r a p i n L o g o T u t o r i a l A - 7 9

Appendix: Procedures

Creating Self-Starting
Usimg the STARTUP Variable

It is possible to write Logo files that begin executing
immediately after being read into the workspace. There
is an interesting way of doing this using the address
SAVMOD, found in the Technical chapter; however this
way is also rather difficult.

A much easier way to create self-starting files is to use
a STARTUP variable. Simply include in the file a
global variable consisting of a list of the procedure to
be started automatically. For example, if Logo encoun
ters the message

M A K E " S T A R T U P [D E M O] ^

while reading in a file, the procedure DEMO will begin
automatically.

RmdMg Apple L(Bg(B FMes

Using Terrapin Logo, you can read files created with
Apple Logo from Apple Computer. It's as easy as
typing

READ "FILENAME

Of course, you will need to alter the syntax of some
procedures to make them run correctly.

You may encounter a message similar to THERE
IS NO PROCEDURE NAMED PPROP. If so, read in
the file using the READTEXT procedure which is
found in the TEXTEDIT file on the Utility disk.

^

A - 8 0 T e r r a p i n L o g o T u t o r i a l

z^^-N

Appendix: Words and Lists
fr"; ^ffi»""'V*~'k".- ~' ~^>~"J '"J%f'H ~"■''' ^ * i • ; • j; ^_; • '■ J"~,"~ I

Now type ED < return > and delete the offending
command. Now type <CTRL>C to define the
procedures.

A separate product available through Terrapin,
Utilities II, contains an Apple Logo Translator
program which does this work for you. Contact
Terrapin for more information.

STRATEGIES FOR THE WORDS AND LISTS
PROIECTS

/^^\

1. Here is one version.

TO EASY :CHTR
IF :CHTR = "F FD 10
IF:CHTR = "RRT15
IF:CHTR = "LLT15
IF :CHTR = "D DRAW
IF:CHTR = "UPU
IF :CHTR = "P PD

END

2. Use the same strategy, adding lines like

IF:CHTR = "SST
IF:CHTR = "HHT

3. For a two-keystroke method, EASY would need to
contain a line such as

IF :CHTR = "C SETPENCOLOR RC

As in QUICKDRAW, RC grabs a character from the
f~*" user, and SETPENCOLOR examines that character

and, if it is a number from 0 to 6, sets the color accord
ingly.

T e r r a p i n L o g o T u t o r i a l A - 8 1

Appendix: Words and Lists

SETPENCOLOR could be written several ways. One
way that uses no new techniques is this:

TO SETPENCOLOR: CHTR
IF:CHTR = 0PC0
IF :CHTR = 1 PC 1
IF:CHTR = 2PC2
IF:CHTR = 3PC3
IF:CHTR = 4PC4
IF:CHTR = 5PC5
IF:CHTR = 6PC6

END

Logo, however, makes life much simpler. If the charac
ter is not a number, it certainly is not a 0,1, 2, 3, etc.,
and so we need not make all of those tests separately.
This is worded concisely in Logo:

IF NOT NUMBER? :CHTR STOP

Then, if it is a number less than 7, it must be a 0
through 6, and we can just set the PENCOLOR to what
ever CHTR happens to be.

IF:CHTR<7PC:CHTR

And that is all the procedure needs to do. Here are two
ways to write that procedure.

TO SETPENCOLOR: CHTR
IF NOT NUMBER? :CHTR STOP
IF:CHTR<7PC:CHTR

END

/ * ^ ^ » K

A-82 Terrapin Logo Tutorial

/̂ ^̂ ■\

/ ^ ^ \

Appendix: Words and Lists

TO SETPENCOLOR :CHTR
IF NUMBER? :CHTR THEN IF :CHTR < 7 PC :CHTR

END

As a frill, the line in EASY could be:

IF :CHTR = "C PRINT1 [WHAT COLOR?] SETPENCOLOR RC

Look up PRINTl in the Logo glossary.

4. You can use exactly the same strategy as above. Be
cause the test for the second character is the same for
setting the background color as for setting the pen
color, it might make sense to use one procedure for
both.

The problem is that after the procedure has verified
that the character is a 0 through 6, it must know not
only what character was typed, but also which to set,
pen or background color.

Here is a procedure that can do both, but it involves
more advanced techniques than we have yet explained
in the tutorial. Don't worry! You can choose either to
use the ones fully explained, or jump the gun and try
the new technique.

TO SETCOLOR :WHICHCOLOR :CHTR
IF NOT NUMBER? :CHTR STOP
IF:CHTR>6ST0P
IF :WHICHC0L0R = [PEN] PC :CHTR ELSE BG :CHTR

END

T e r r a p i n L o g o T u t o r i a l A - 8 3

Appendix: Words and Lists
[■̂ ■̂■■■■■■■■̂

The lines in EASY would need to be slightly different,
stating which color, PEN or BACKGROUND, was to be
changed. Here is one set of possibilities.

IF :CHTR = "C PRINT1 [WHAT COLOR?] SEJCOLOR [PEN]
RC

IF :CHTR = "B PRINT1 [WHAT COLOR?] SETCOLOR
[BACKGROUND] RC

5. Recognizing and using digits can be done several
ways. The simplest (if not most elegant) way to write
EASY would be to add a bunch of lines like this:

^

IF :CHTR = 2 MAKE "MULTIPLE 2
IF :CHTR = 3 MAKE "MULTIPLE 3
IF :CHTR = 4 MAKE "MULTIPLE 4
IF :CHTR = 5 MAKE "MULTIPLE 5
IF :CHTR = 6 MAKE "MULTIPLE 6
IF :CHTR = 7 MAKE "MULTIPLE 7
IF :CHTR = 8 MAKE "MULTIPLE 8
IF :CHTR = 9 MAKE "MULTIPLE 9

Of course, all these lines say essentially the same
thing, namely: "If the character is a number, make
MULTIPLE that number." That can be translated
straightforwardly into Logo with the much more
compact statement.

IF NUMBER? :CHTR MAKE "MULTIPLE :CHTR

Inserting this new logic into EASY requires that we
use the new value, and so the lines that move the turtle
must now incorporate MULTIPLE thus:

A - 8 4 T e r r a p i n L o g o T u t o r i a l

Appendix: Words and Lists

/m^^\

/•^*\

IF :CHTR = "F FD 10 * :MULTIPLE
IF :CHTR = "RRT 15* MULTIPLE
IF:CHTR = "LLT15*:MULTIPLE

Alternatively, the lines could be

IF :CHTR = "F REPEAT :MULTIPLE [FD 10] etc.

Finally, we always want to reset the multiple to 1 so
that it doesn't spill over from one command to the
next.

Here is how the procedure might look.

TO QUICKDRAW
EASYRC
QUICKDRAW

END

TO EASY:CHTR
IF :CHTR = "F FD 10 * :MULTIPLE
IF :CHTR = "RRT 15* MULTIPLE
IF :CHTR = "LLT 15* MULTIPLE
IF :CHTR = "D DRAW
IF :CHTR = "U PU
IF :CHTR = "P PD
IF :CHTR = "H HT
IF 'CHTR = "S ST
IF :CHTR = "C PRINT1 [WHAT COLOR?] SETCOLOR [PEN]

RC
IF :CHTR = "B PRINT1 [WHAT COLOR?] SETCOLOR [BG]

RC
MAKE "MULTIPLE 1
IF NUMBER? :CHTR MAKE "MULTIPLE :CHTR

END

T e r r a p i n L o g o T u t o r i a l A - 8 5

Appendix: Words and Lists

Since PEN uses the variable PENPOS, QD (the setup
procedure written earlier) should initially set the pen
position to [DOWN].

^

EASY sets MULTIPLE to 1 every time it is executed. As
already mentioned, this is so that L or F or R will mean
the same as 1L or IF or 1R each time unless some other
number is typed.

The placement of the MAKE "MULTIPLE 1 line is
important. It must be placed after the lines that use
the value of MULTIPLE and before the line that sets
MULTIPLE to values other than 1. Otherwise the spe
cial values of MULTIPLE would persist too long or be
erased too soon.

A second thing to notice is that EASY cannot use
MULTIPLE before setting it the first time. So before
QUICKDRAW can be started, MULTIPLE must be
given a value (presumably the value 1). This startup ^-*«k
p r o c e d u r e s e e m s c o n v e n i e n t : ■

TOQD
MAKE "MULTIPLE 1
QUICKDRAW

END

6. The procedure PEN picks the pen up if it is already
down, and puts it down if it is already up. We say it
"toggles the pen state." To include it in EASY, only one
line is needed:

IF:CHTR = "PPEN

The line IF :CHTR = "U PU can be eliminated, because
P now takes care of both PD and PU.

A - 8 6 T e r r a p i n L o g o T u t o r i a l

Jm^^\

Appendix: Words and Lists■■ I

S ^ ^ \

TOQD
MAKE "MULTIPLE 1
MAKE "PENPOS [DOWN]
QUICKDRAW

END

It is also possible to set up a toggle that works with
out setting a global variable with MAKE. Look up
TURTLESTATE in the Logo glossary, and learn about
FIRST (from the glossary or later in this chapter) to
understand this alternate version of PEN which we are
calling TOGGLEPEN.

TO EASY :CHTR
IF :CHTR = "F FD 10
IF:CHTR = "RRT15
IF:CHTR = "LLT15
IF :CHTR = "D DRAW
IF :CHTR = "P TOGGLEPEN

END

TO TOGGLEPEN
IFFIRSTTSPUELSEPD

END

TS is the abbreviation for TURTLESTATE. The first
element of the list that TS outputs tells whether the
turtle's pen is up or down. If it is down (if FIRST TS is
TRUE) TOGGLEPEN puts it up, otherwise it puts it
down.

In this case, since no global variable is involved, no
additions to QD would need to have been made.

r ^ ^ N

T e r r a p i n L o g o T u t o r i a l A - 8 7

Appendix: Words and Lists

7. T0T0GGLE.SH0WN
TEST :SH0WN = [SHOWN]
IFTRUE HT MAKE "SHOWN [HIDDEN]
IFFALSE ST MAKE "SHOWN [SHOWN]

END

It is not necessary to tell the user whether the turtle is
shown or not, so the PRINT statement was not added.
Since the values [SHOWN] and [HIDDEN] now serve
only as information to the procedure (they will not be
printed as information to the user), it would be more
"natural" to use TRUE and FALSE to state whether the
turtle was shown.

The logic would then be this: If the turtle is shown
(that is, if SHOWN is TRUE) then hide the turtle, else
show it. In either case, make SHOWN whatever it was
not; use the primitive NOT to make it FALSE if it is
TRUE, or TRUE if it is FALSE.

T0T0GGLE.SH0WN
IF:SHOWNHTELSEST
MAKE "SHOWN NOT :SH0WN

END

Finally, a strategy using TURTLESTATE and avoiding
the use of global variables works for showing and hid
ing the turtle as well as for the pen position.

Again, this strategy makes use of techniques we have
not yet described, but which you can look up if you
want to begin learning about them now.

^ ^ \

/"-̂ *\

A - 8 8 T e r r a p i n L o g o T u t o r i a l

Appendix: Words and Lists

TOGGLE.SHOWN using TURTLESTATE would look
like this:

T0T0GGLE.SH0WN
IF FIRST BUTFIRST TS HT ELSE ST

END

See TURTLESTATE, and learn about BUTFIRST (in
the glossary or later in this chapter).

8. ACTION no longer needs to control the turns di
rectly, but can handle turning the way it handles
speed. So, it might look like this:

TO ACTION: CHTR
/—s IF :CHTR = "R MAKE "ANG :ANG + 2 ;TURN RIGHT
(M O R E

IF :CHTR = "L MAKE "ANG :ANG - 2 ;TURN LEFT MORE
IF :CHTR = "F MAKE "DIST :DIST + 2 ; FASTER
IF :CHTR = "S MAKE "DIST :DIST - 2 ; SLOWER
IF :CHTR = "D DRAW

END

START now has to initialize one more global variable,
ANG, to something sensible, and might look like this:

TO START
MAKE "DIST 0
MAKE "ANG 0
LOOP

END

/^ •N

T e r r a p i n L o g o T u t o r i a l A - 8 9

Appendix: Words and Lists

It might also be nice if the D key really reset every
thing. As the program currently stands, D will clear the
screen, but still leave the turtle flying around in what
ever way it last flew. It might be reasonable to change

IF:CHTR = "DDRAW
t o

IF :CHTR = "D CLEAR

and then to write a procedure CLEAR which reini
tializes the global variables and clears the screen.

TO CLEAR
MAKE "ANG 0
MAKE "DIST 0
DRAW

END

9. The feature to stop the turtle must reinitialize ANG
and DIST without clearing the screen. Here is one.

TO RESET
MAKE "ANG 0
MAKE "DIST 0

END

Then the lines in ACTION would be

IF :CHTR = "D CLEAR

to accomplish the previous task of clearing the screen,
and

IF :CHTR = ". RESET

/̂ ^^ \̂

~)

A - 9 0 T e r r a p i n L o g o T u t o r i a l

Appendix: Words and Lists

to stop the turtle without clearing the screen. (The
command character to stop the turtle is the period.)

Here are lines for reversing the rotation of the turtle,
reversing the direction of the turtle and reversing both.
Insert them and play with them. The effects are very
interesting.

IF :CHTR = "T MAKE "ANG (- :ANG); REVERSES TURN
IF :CHTR = "M MAKE "DIST (- :DIST); REVERSES

MOVEMENT
IF :CHTR = "B MAKE "DIST (- :DIST)

MAKE "ANG (- :ANG); REVERSES BOTH

10. TO DECODE :N
^ O P N T H : N " A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

END

There is another way that doesn't involve "counting"
with NTH (and therefore is faster). CHAR is a Logo
primitive that takes an integer as input and outputs the
character whose ASCII code is that integer. The ASCII
code for A is 65. For B, it is 66; for C, 67, and so on. So
another way to write DECODE is:

TO DECODE :N
OP CHARON+ 64)

END

11. TO ONENUM :UST
OP DECODE FIRST :UST

END

T e r r a p i n L o g o T u t o r i a l A - 9 1

Appendix: Words and Lists

12. TOTWONUMIIST
OP WORD DECODE FIRST :LIST ONENUM

BF :LIST
END

13. TOTHREENUMIIST
OP WORD DECODE FIRST IISTTWONUM

BF :LIST
END

14. Here is the logic. If I have only one number in my
list, I know exactly what to do. As in ONENUM, I sim
ply OP DECODE FIRST :LIST.

If my list is longer than that, I cannot handle it all at
once, sol get ready to glue together the decoding of the
first number (which I can do immediately) and the de
coding of a slightly shorter list.

Since the exact same reasoning applies to the slightly
shorter list, the same procedure can be used. Either it
can now handle the list directly (because there is only
one number left in it), or it, too, gets ready to glue on its
little piece and defers the rest of the job to another step.
Here is the procedure it generates.

TOANYNUM:LIST
IF(BF:LIST)=[]

OP DECODE FIRST :LIST
OP WORD DECODE FIRST :LIST

ANYNUM BF :LIST
END

/̂ ^̂ %.

^

A - 9 2 T e r r a p i n L o g o T u t o r i a l

Appendix: Words and Lists
f * * ^

/^^\

15. This could all be done in a single procedure with
one long and ugly line that looks something like this:

TO RANDSENT
PR (SE NTH 1 + RANDOM 7 PEOPLE

NTH 1 +RANDOM 6 ACTIONS
NTH 1 + RANDOM 7 PEOPLE)

END

The repetitive elements and the difficulty of seeing
which words go with which make it useful to write a
helpful subprocedure. Good style makes it easy to
change and extend the program if you want to. Here is
a first attempt:

TO RANDSENT
PR SENTENCE WHO DIDWHAT

END

TO WHO
OP PICK 7 PEOPLE

END

TO DIDWHAT
OPSEDIDITWHO

END

TO DIDIT
OP PICK 6 ACTIONS

END

TO PICK IISTSIZE :LIST
OP NTH 1 + RANDOM :LISTSIZE :LIST

END

T e r r a p i n L o g o T u t o r i a l A - 9 3

Appendix: Words and Lists
z*^^^fc\

A problem with this way of doing things is that if
ACTIONS or PEOPLE are edited, and the number of
items in their lists is changed, WHO and DIDIT must
also be edited, because they make explicit assump
tions about the length of the lists they get.

This is not good programming practice, but fortu
nately LISTSIZE can always be determined from LIST
just by counting, if we had a procedure that could
count the elements in a list.

The procedure COUNT, which takes a list (or a word)
as its input, does exactly this. (In Terrapin Logo ver
sion 2.0, COUNT is defined as a primitive.)

T O C O U N T : O B J ^
I F : O B J = [] O P 0 '
0P1 + COUNT BF:0BJ

END

To see what COUNT does, type

COUNT [LOGO]
COUNT [LOGO]
COUNT TOGO

Because PICK can use COUNT to determine the list's
size, it no longer needs to be told the size, and so
LISTSIZE can be dropped from the title line. Where
that information was needed in the body of the old ver
sion, COUNT :LIST can be substituted. The result is a
procedure that looks like this.

T O P I C K : L I S T ^ \
OP NTH 1 + RANDOM (COUNT :UST) :LIST >

END

A - 9 4 T e r r a p i n L o g o T u t o r i a l

ri<i_____ Appendix: Words and Lists

/^^\

Because PICK now takes only one input — the actual
list—WHO and DIDIT need to be edited to use PICK
properly.

T O W H O T O D I D I T
OP PICK PEOPLE OP PICK ACTIONS

E N D E N D

The resulting program not only solves the problem
raised earlier — namely, that PEOPLE and ACTIONS
can be edited freely without requiring changes to be
made in WHO and DIDIT—but it also looks''cleaner.''

It is a general rule of good programming that by design
ing the "low level procedures" (such as PICK) properly,
the higher level procedures (such as WHO) become
cleaner, better organized, and easier to under
stand and debug.

16. As with all procedures, there are lots of possible
designs. Here is one for VOWEL?.

TO VOWEL?: LETTER

/ ^ ^ N

LETTER = "A OP "TRUE
LETTER = "E OP "TRUE
LETTER = "I OP "TRUE
LETTER = "0 OP "TRUE
LETTER = "U OP "TRUEF

OP "FALSE
END

T e r r a p i n L o g o T u t o r i a l A - 9 5

Appendix: Words and Lists
z^^^ .

^

But the logic is that IF the :LETTER is any one of A, E, I,
O, or U, then OP "TRUE, otherwise OP "FALSE. This
might be more concisely expressed as

TO VOWEL?: LETTER
IF MEMBER? :LETTER [A EI 0 U] OP "TRUE
OP "FALSE

END

But remember, MEMBER? is a predicate itself. It al
ready outputs TRUE or FALSE, exactly what we want
VOWEL? to output. So, VOWEL? can also be written:

TO VOWEL?: LETTER
OP MEMBER? :LETTER [AEIOU]

END

or even

TO VOWEL?: LETTER
OP MEMBER? :LETTER "AEIOU

END

18. It is tempting to write a YES? procedure modeled
on VOWEL? like this:

TO YES?
OP MEMBER? REQUEST [[YES] [YUP] [Y] [SURE]

[YEAH]]
END

but all life is not that simple. What if the person types [I
SUPPOSE SO]? The procedure would translate that as
if it were a clear NO, when it is probably YES, or at least ̂ —v
ambiguous. Alas, we must work harder.

A - 9 6 T e r r a p i n L o g o T u t o r i a l

Appendix: Words and Lists

Here is a suggestion.

TO YES?
OP YESSUB? REQUEST

END

TO YESSUB? :RESP0NSE
IF MEMBER? :RESP0NSE [[YES] [YUP] [Y] [SURE]

[YEAH]] OP "TRUE
IF MEMBER? :RESP0NSE [[NO] [NOPE] [N]] OP

"FALSE
PRINT1 [PLEASE ANSWER "YES" OR "NO":]
OP YES?

END

This is recursive in a new way. YES? is not defined in
terms of itself, nor is YESSUB? — but each is defined
in terms of the other! Make sure you understand how
these two procedures work together.

18. Either of the first two work properly. To see what is
wrong with the third version, try PLURAL "OX.

19. It would be convenient to have a procedure that re
turned the last two letters of a word. Of course, if there
is only one letter in the word, LASTTWO must output
the whole thing.

TO LASTTWO :W0RD
IF" = BL:W0RD0P:W0RD
OP WORD LAST BL :W0RD LAST :W0RD

END

T e r r a p i n L o g o T u t o r i a l A - 9 7

Appendix: Words and Lists
— — ^ — ^ - ^ ^ ^ ^ ^ — ^

Now we can write a rule for handling words that need
ES endings. Let's replace

IF "X = LAST :N0UN OP WORD :N0UN "ES

w i th

IF NEEDS.ES? :N0UN OP WORD :N0UN "ES

Cheating! NEEDS.ES? hasn't been written yet.

TO NEEDS.ES? :N0UN
IF (ANYOF "S = LAST: NOUN

"X = LAST: NOUN
"Z = LAST :N0UN) OP "TRUE

OP ANYOF "CH = LASTTWO :N0UN
"SH = LASTTWO :N0UN

END

Alas, the formatting which makes the design so clear
on paper is all lost in Logo's editor!

20. IF "Y = LAST :NOUN OP WORD BUTLAST
:NOUN"IES

21. Ah, but not if the letter before the Y is a vowel!

IF "Y = LAST :N0UN OP YPLU :N0UN

T0YPLU:N0UN
IF VOWEL? LAST BL :NOUN OP WORD :NOUN "S
OP WORD BUTLAST :NOUN "IES

END

A - 9 8 T e r r a p i n L o g o T u t o r i a l

/*^^\

/^*\

Appendix: Words and Lists

22. The big difference between FIXVERB and
PLURAL is in their handling of lists. In the case of
nouns, it was always the LAST element of the list that
needed to be pluralized, but in the case of the verbs in
ACTIONS, it is always the FIRST element that needs
the modification. So the important line to change is the
one that begins

IF LIST?

For FIXVERB, it might look like this:

IF LIST? :VERB OP SE FIXVERB FIRST :VERB BF :VERB

PAST and FIXVERB appear to have absolutely iden
tical logic, but their exceptions are different. This
brings up an interesting problem. The solution used in
PLURAL was to create global variables which con
tained the proper form of exceptional words. What
happens with verbs like HAVE or GO which have
different exceptions for present and past forms?
Although there is always a way to solve the problem
if you notice it, the use of global variables is prone
to surprising bugs until you notice the conflict.

TO PRESENT :SUBJ:VERB
IF "BE = :VERB OP EXCEPTION.BE :SUBJ
IF(ANYOF"l = :SUBJ

"YOU = :SUBJ
"WE = :SUBJ
"THEY = :SUBJ) OP :VERB

OP FIXVERB :VERB
END

Try to write EXCEPTION.BE yourself!

T e r r a p i n L o g o T u t o r i a l A - 9 9

Appendix: Words and Lists
________________________M_______^^

2 3. An extra level of analysis is needed in order to de
termine which class of verbs (which conjugation) is
involved.

Here is a simplifying structure for the top level. It uses
global variables in a risky way, but the structure will be
fairly clear.

TO PRESENT :SUJET :VERBE
MAKE "ROOT BL BL :VERBE; SEPARATE ROOT
MAKE "END LASTTWO :VERBE; SEPARATE CONJ.

MARKER
; AND NOW, HANDLE EACH CASE SEPARATELY
IF"ER = :END OP ER.PRES :SUJET :R00T
IF "IR = :END OP IR.PRES :SUJET :R00T
IF "RE = :END OP RE.PRES :SUJET :R00T

END

In the following case, make a further distinction.

TO IR.PRES :SUJET:R00T
IF "0 = LAST :R00T OP OIR.PRESENT :R00T
0PXIR.PRESENT:R00T

END

The rest is yours.

24. The relevant change to make is this

IF MEMBER? REQUEST :ANSWER PR [YUP!]

2 5. This version of ADDQUIZ takes a number as input
and keeps giving problems until that many problems
h a v e b e e n a n s w e r e d c o r r e c t l y . ^ " \

A - 1 0 0 T e r r a p i n L o g o T u t o r i a l

Appendix: Words and Lists
l

s*

/mm>̂

/WK^y

TO ADDQUIZ :TIMES
IF:TIMES = 0ST0P
IF ADDQ RANDOM 13 RANDOM 13 ADDQUIZ :TIMES -1

ELSE ADDQUIZ :TIMES
END

T0ADDQ:N1 :N2
PRINT1(SE:N1"+:N2" '= ')
IF (:N1 + :N2) = FIRST RQ PR [YAY!] OP "TRUE
PR (SE "NOPE, :N1 "+ :N2 "= :N1 + :N2)
OP "FALSE

END

Notice that the only differences in ADDQ are that it
outputs TRUE if the answer is correct and FALSE
otherwise.

26. Here is one form. Are there bugs ? Is there a cleaner
way?

TO ADDQUIZ :MAX :TIMESRIGHT :TIMESWRONG
IF:TIMESWR0NG=2ST0P
IF :TIMESRIGHT = 3 ADDQUIZ :MAX + 10 0 STOP
IF ADDQ RANDOM :MAX RANDOM .MAX

THEN ADDQUIZ :MAX :TIMESRIGHT + 1
:TIMESWRONG STOP
ELSE ADDQUIZ :MAX :TIMESRIGHT
:TIMESWRONG STOP

ADDQUIZ :MAX :TIMESRIGHT :TIMESWRONG + 1
END

Start it by typing

ADDQUIZ43 0

T e r r a p i n L o g o T u t o r i a l A - 1 0 1

Appendix: Words and Lists

27. The logic we are trying to add is this: ADDQ is told
what the problem is and how many tries the person has
already made.

T0ADDQ:TRIES:N1 :N2

If that number (TRIES) is 2, ADDQ should give the cor
rect answer and output FALSE.

IF :TRIES = 2 PR (SE :N1"+ :N2 "= :N1 + :N2) OP
"FALSE

Otherwise, ADDQ should state the problem as before
and allow the person another try. If the person gets the
right answer, ADDQ says YAY and outputs TRUE, as it
did before.

PRINT1(SE:N1"+:N2" '= ')
IF (:N1 + :N2) = FIRST RQ PR [YAY!] OP "TRUE

But if the person gets the wrong answer, ADDQ should
say "try again," give the same problem as before, and
know that the person has taken one more try at answer
ing it.

PRINT [TRY AGAIN]
0PADDQ:TRIES + 1 :N1 :N2

Of course, ADDQUIZ must start ADDQ by telling it
that no tries have yet been made.

IF ADDQ 0 RANDOM :MAX RANDOM :MAX etc.

^

A - 1 0 2 T e r r a p i n L o g o T u t o r i a l

Appendix: Words and Lists

The completed program might look like this.

TO ADDQUIZ :MAX :TIMESRIGHT :TIMESWRONG
IF:TIMESWR0NG=2ST0P
IF :TIMESRIGHT = 3 ADDQUIZ :MAX + 1 0 0 STOP
IF ADDQ 0 RANDOM :MAX RANDOM :MAX

ADDQUIZ :MAX :TIMESRIGHT + 1
:TIMESWRONG STOP

ELSE ADDQUIZ :MAX :TIMESRIGHT
:TIMESWRONG + 1 STOP

END

T0ADDQ:TRIES:N1:N2
IF :TRIES = 2 PR (SE :N1 "+ :N2 "= :N1 + :N2)

OP "FALSE
f ~ ^ P R I N T 1 (S E : N 1 " + : N 2 " ' = ')

IF(:N1 + :N2) = FIRST RQ PR [YAY!] OP "TRUE
PRINT [TRY AGAIN]
0PADDQ:TRIES + 1 :N1 :N2

END

28. PICK can select some element from the STATES
list. Each element of the STATES list contains both a
question as its FIRST and an answer as its LAST (or
BUTFIRST). This is just what QA needs. The hitch is
that if we simply type

QA FIRST PICK :STATES LAST PICK :STATES

Logo will run PICK twice, and each time PICK is run it
may pick a different element from the list! QA needs to
take the FIRST and LAST (or BUTFIRST) of the same
element.

T e r r a p i n L o g o T u t o r i a l A - 1 0 3

Appendix: Words and Lists

The first thing to resolve is whether we use the LAST
or BUTFIRST of the element. It makes a big difference,
since the LAST is a word and the BUTFIRST is a list.

Since QA compares its :ANSWER with a REQUEST
(which is always a list), we might as well use BF. One
way STATESQUIZ might work is this:

TO STATESQUIZ
REPEAT 5 [MAKE "QLIST PICK:STATES QA FIRST :QLIST

BF:QLIST]
END

An alternative that is neater in a few ways is this:

TO STATESQUIZ
REPEAT 5 [STATEQA PICK :STATES]

END

TO STATEQA:QLIST
QA FIRST: QLIST BF: QLIST

END

29. The BF of [IOWA [DES MOINES]] is [[DES
MOINES]] but we want [DES MOINES] to compare to
the sentence typed to REQUEST. In this case, we
would have been better off taking the LAST rather
than the BUTFIRST. How do we r.esolve the problem?

The real problem is that the database :STATES has
both words and lists as possible answers. This makes
it difficult to check for equality.

- ^

A - 1 0 4 T e r r a p i n L o g o T u t o r i a l

I

/ ^ * \

• —»v

Appendix: Words and Lists

If the answer-part of each element of the: STATES list
was always a list, we could consistently choose the
FIRST for the question, and the LAST for the answer.

So, we make states differently:

MAKE "STATES [[OHIO [COLUMBUS]] [[NEW YORK]
[ALBANY]] [GEORGIA [ATLANTA]] [IOWA
[DES MOINES]]]

And we redefine STATEQA

TO STATEQA :QLIST
QA FIRST :QLIST LAST :QUST

END

30. 'Tis all yours!

31. The changes would be in the form:

IF :CHAR = "F RUN.AND.RECORD SE "FD 10 * :MULTIPLE
IF :CHAR = "R RUN.AND.RECORD SE "RT 15 * :MULTIPLE
IF :CHAR = "L RUN.AND.RECORD SE "LT 15 * :MULTIPLE

There are two subtleties. One is that the command
lines read:

IF :CHAR = "F RUN.AND.RECORD SE "FD 10 * :MULTIPLE

and not (more simply)

IF :CHAR = "F RUN.AND.RECORD [FD 10 * :MULTIPLE]

T e r r a p i n L o g o T u t o r i a l A - 1 0 5

Appendix: Words and Lists

^

The reason is that although the second version will
RUN correctly, the command that will be LPUT on the
history list will be, literally, [FD 10 * MULTIPLE]
rather than the desired [FD 30] or whatever it is.

RUN and REPEAT are the only primitives that are ca
pable of evaluating what is inside a list. Everything
else just treats it as text without meaning.

Also, remember that TOGGLEPEN must be edited to
record its ups and downs.

32. Lines like IF :CHAR = "< RCIRCLE :SIZE would
be needed, but you must provide the mechanism for
setting :SIZE just as you had for the forward and turn
i n g c o m m a n d s . ^ " • n

If you allow ARC (first introduced in the section on
OUTPUT) to take an angle input as well as the two it
now takes, SEGMENTS and CHORD, the new proce
dures RCIRCLE and LCIRCLE can then be defined by
using ARC with angles of 18 and -18 respectively.

33. The procedure itself is very straightforward. It
depends on lists of the verbs, nouns, proper names,
and so forth.

So far, procedures to output verbs and proper names
have been created, as has a global variable containing
adverbs. The following definition of MADLIB further
assumes procedures NOUNS and ADJECTIVES that
must be created on the model of ACTIONS and
PEOPLE.

A _ i o 6 T e r r a p i n L o g o T u t o r i a l

Appendix: Words and Lists

TO MADLIB :TEXT
OP MAD "V ACTIONS MAD "N NOUNS MAD "PN

PEOPLE MAD "ADV :ADVERBS
MAD "ADJ ADJECTIVES :TEXT

END

34. With the example that was given, all that is
needed is to check both the words themselves (i.e.,
PN LOVES PN<comma> BUT PN CANT STAND
PN<period>) and the butlast of the words (i.e., P
LOVE PN BU P CAN' STAN PN). All of the PNs will be
caught this way. The test

IF BL FIRST :C0NTEXT =:KEY

/*k will do that job. If the butlast of the word is KEY, then' the last will be the punctuation mark. By picking an
alternate and wording the punctuation mark to the
end of it,

WORD PICK :ALT LAST FIRST :C0NTEXT

the original punctuation has been restored. Finally,
this word must be integrated into the developing
sentence just as if the punctuation problem had not
occurred.

OP SE WORD PICK :ALT LAST FIRST :CONTEXT
MAD:KEY:ALTBF:CONTEXT

Altogether the new line of the procedure is:

IFBLFIRST:CONTEXT = :KEY
OP SE WORD PICK :ALT LAST FIRST [CONTEXT

MAD :KEY:ALTBF [CONTEXT

T e r r a p i n L o g o T u t o r i a l A - 1 0 7

Appendix: Words and Lists

There is a problem. What if one of the keywords were
N, as in problem 33, and one of the words of the sen
tence were "NO"? Butlast of the word NO would
falsely match the keyword, and NO would be re
placed with a noun!

A more complex and sophisticated procedure could
be written, but the best solution is to make keywords
clearly distinct from text. If keywords all began with
some non-text character, so that they could never be
generated from a text word (as happened when N was
generated from NO), the problem would be solved.

Recommendation: Begin keywords with <period>.

Thus, madlib sentences would look like this:

[.PN LOVES .PN, BUT .PN CANT STAND .PN.]

Note that MAD never tests for the special keyword
marker. The marker just serves to prevent mishaps.

Does the order in which the tests are performed mat
ter?

TO MAD :KEY:ALT [CONTEXT
IF [CONTEXT = [] OP []
IF (FIRST [CONTEXT) = :KEY OP SE PICK [ALT

MAD [KEY [ALT BF [CONTEXT
IF BL FIRST [CONTEXT = :KEY OP SE WORD PICK [ALT

LAST FIRST [CONTEXT MAD [KEY [ALT BF [CONTEXT
OP SE FIRST [CONTEXT MAD :KEY :ALT BF [CONTEXT

END

^

A - 1 0 8 T e r r a p i n L o g o T u t o r i a l

I

r

Appendix: Words and Lists

35. Let's title the procedure this way.

TO MADLIB [TEXT [KEYS

The logic is that if there are no keywords at all to find
and replace, then the text must be returned as it is.

IF EMPTY? [KEYS OP :TEXT

If there are keys to replace, then

1) using the first of them, replace each in
stance of it in the text with a suitable alterna
tive (this is accomplished by MAD) and

2) use that as the text in which to search for
the remaining keys. This is the purpose of
MADLIB, itself, and is thus the recursive
step.

Worded more like the program, we are to output the
MADLIB of and a list of the remaining keys.

Skipping over a detail, the Logo might look something
like this:

OP MADLIB (MAD FIRST [KEYS somethingorother [TEXT)
BF:KEYS

The "somethingorother'' needs some thinking.

In previous situations, the key words bore no relation
to the procedures or variables that contained the corre
sponding lists. This is inconvenient, since there is no
way to know from looking at the key word, just where
to find its substitutes.

T e r r a p i n L o g o T u t o r i a l A - 1 0 9

Appendix: Words and Lists
/*"̂ ^̂ .

But that can be corrected. Abandon the old design of
having V refer to a procedure ACTIONS, and ADV to a
variable ADVERBS.

From now on, we must be consistent about using
either procedures or variables. Further, the keyword
will be the name of the variable or the title of the pro
cedure.

Choosing to go with global variables, we can then say
that if MAD's KEY is the first of MADLIB's KEYS,
MAD's ALT will be the THING of the first of MADLIB's
KEYS. MADLIB would then look like this:

TO MADLIB :TEXT :KEYS
I F E M P T Y ? : K E Y S O P : T E X T - — s
OP MADLIB (MAD FIRST :KEYS THING FIRST :KEYS

:TEXT)BF:KEYS
END

If we chose to use procedures titled by KEY, then
MAD's ALT would be the result of RUNning the first of
MADLIB's KEYS.

TO MADLIB :TEXT:KEYS
IF EMPTY? :KEYS OP :TEXT
OP MADLIB (MAD FIRST :KEYS RUN (SE FIRST :KEYS)

:TEXT) BF :KEYS
END

The most important element here became the willing
ness to abandon some old designs and rethink the rela
tionship between parts of the problem.

A - l 1 0 T e r r a p i n L o g o T u t o r i a l

Appendix: Words and Lists

36. GREET needs to look at what OUTPUT.NAME
gives it and determine, first, if the result is a name or a
response. Here is a possible method:

TO RESPOND :NAME.OR.PHRASE
IF WORD? :NAME.OR.PHRASE GREET
:NAME.OR.PHRASESTOP
PRINT :NAME.OR.PHRASE

END

TO FRIENDLY
PR [WHAT'S YOUR NAME?]
RESPOND OUTPUT.NAME REQUEST

END

/-^ 37. Just before the neutral answer (OP [I WAS JUST
CURIOUS]] the procedure must look for negatives,
and should respond appropriately if it finds any.

IF FIND? [WON'T NONE DON'T NOT NO] :SENT OP
[SORRY I ASKED]

FIND? is simply a fancy MEMBER?

TOFIND? :ITEMS :LIST
IF EMPTY? :ITEMS OP "FALSE
IF MEMBER? FIRST :ITEMS :UST OP "TRUE
OPFIND?BF:ITEMS:UST

END

38. Any of a number of strategies will work. Be of
good cheer! The task of deciding which approach to
take should be simple for anyone who has gotten this

f ^ ^ f a r .

T e r r a p i n L o g o T u t o r i a l A - l 1 1

Appendix: Words and Lists
WMmmmmmi

39. If punctuation only comes at the ends of words,
removing it is quite simple.

TO NOPUNC :W0RD
IF MEMBER? LAST :W0RD [",.! ?] OP BL :W0RD
OP :W0RD

END

A more general solution, more powerful but slower, is:

TO NOPUNC :W0RD
IFEMPTY?:W0RD0P"
IF MEMBER? FIRST :W0RD [",.! ?] OP NOPUNC BF

:W0RD
OP WORD FIRST :W0RD NOPUNC BF :W0RD

E N D / — ^

In either case, change FIRST :S to NOPUNC FIRST :S
throughout the CHECK procedure.

41. Sorry. From here on in, you are on your own!

/ " ^ ^ ^ k

A - 1 1 2 T e r r a p i n L o g o T u t o r i a l

Logo Command
Glossary

-®LOGO COMMAND GLOSSARY

/^^ \

+ Additional commands available only in Logo PLUS.
Refer to the Getting Acquainted with Logo PLUS booklet for
a summary of these commands.

Categorized Listing of Commands
Graphics Commands

BACK + PENERASE
BACKGROUND PENUP
CLEARSCREEN RIGHT

+ COLORUNDER SETHEADING
+ DOT + SDOT
+ DOT? + SDOT?
+ DOTXY + SDOTXY

DRAW SETX
+ FILL SETXY

FORWARD SETY
FULLSCREEN SHOWTURTLE
HEADING SPLITSCREEN
HIDETURTLE TEXTSCREEN
HOME TOWARDS
LEFT TURTLESTATE
NODRAW WRAP
NOWRAP XCOR
PENCOLOR YCOR
PENDOWN + ZOOM

Graphics Screen Text Commands
(Logo PLUS omly)

GCURSOR GREADCHARACTER
GCURSORPOS GREQUEST
GMODE GSTYLE
GPRINT GWRITE
GPRINT1 <Open-AppIe> W

Terrapin Logo Tutorial L- l

Logo Command Glossary

Shape Commands (Logo PLUS only)
CLEARSHAPES STAMP
COPYSHAPE STAMPXY
EDSHAPE TCOLOR
LOCKHEADING TOTALSHAPES
SETCOLOR TSHAPE
SETSHAPE TSIZE
SETSIZE UNLOCKHEADING

Numeric Operations
+ NUMBER?
- QUOTIENT
* RANDOM
/ RANDOMIZE
> REMAINDER
< ROUND
ATAN SIN
COS SQRT
INTEGER

Word and List Operations
s LAST
BUTFIRST LIST
BUTLAST LIST?
COUNT LPUT
EMPTY? MEMBER?
FIRST SENTENCE
FPUT WORD
ITEM WORD?

Naming
LOCAL THING
MAKE THING?

~)

~)

~)

L-2 Terrapin Logo Tutorial

Logo Command Glossary

r^

B 7 * W » j ' * * ' " " . * < * - ^ 7 7 ■" '■ • '■• ' . . = • . .:".. -\ * '■■-'-;'.. ■ .. > • -/ ■ •; >;**K W-'j |

Conditionals
ALLOF IFTRUE
ANYOF NOT
ELSE TEST
IF THEN
IFFALSE

Control
GO RUN
GOODBYE STOP
OUTPUT TOPLEVEL
REPEAT + WAIT

Input and Output
ASCII PADDLEBUTTON
CHAR PRINT
CLEARINPUT PRINT1
CLEARTEXT + PRINTSCREEN
CURSOR RC?

+ CURSORPOS READCHARACTER
+ LOWERCASE REQUEST
+ NOTE SHOWTEXT

OUTDEV + UPPERCASE
PADDLE

Debugging
CONTINUE + SHOW
NOTRACE TRACE
PAUSE + TRACEBACK

Managing the Workspace
+ COPYDEF + NAMES

DEFINE PRINTOUT
EDIT TEXT
END + TITLES
ERASE TO
ERNAME

Terrapin Logo Tutorial L-3

Logo Command Glossary

Handling Files
+ APPEND + MAKEDIR
+ BLOAD + ONLINE
+ BSAVE + OPEN

CATALOG + PREFIX
+ CLOSE READ
+ COPY + READFONT
+ DELETE READPICT
+ DISKREAD + READSHAPES
+ DISKWRITE + READTEXT

DOS + RENAME
+ DPOSITION SAVE
+ DPRINT SAVEPICT
+ EOF? + SAVESHAPES
+ ERASEDIR + SAVETEXT

ERASEFILE SETDISK
ERASEPICT + SETPREFIX

+ ERASESHAPES + UNLOCK
+ FILE? + VCAT
+ LOCK

Miscellaneous Commands
.ASPECT .EXAMINE
.BPT .GCOLL
.CALL .NODES
.CONTENTS ; (semicolon)
.DEPOSIT

Command Summary
+ Addition
- Subtraction (two inputs) and

negation (one input).
*

Multiplication
/ Division (^always outputs a decimal

value).

/̂ ^̂ »,

~)

L-4 Terrapin Logo Tutorial

Logo Command Glossary
lr/JVfr_frffrJ v.-r---

; (semicolon)

ALLOF

ANYOF

r ^ ^

,'.- »:;<&.•& 'rfa?, y» ly *■ "V3FM3

If both inputs are numbers,
compares them to see if they are
numerically equal. If both inputs are
words, compares them to see if they
are identical character strings. (In
this case, a space is needed before
the = sign.) If both inputs are lists,
compares them to see if their corre
sponding elements are equal. Out
puts TRUE or FALSE accordingly.
Outputs TRUE if its first input is
greater than its second, otherwiseFALSE (inputs must be numbers).
Outputs TRUE if its first input is
less than its second, otherwise
FALSE (inputs must be numbers).
Causes the rest of the line not to be
evaluated. Useful for including
comments in procedures and
procedure titles.
Takes a variable number of inputs
(default is two) and outputs TRUE if
all are TRUE. If there are more
than two inputs, there must be an
opening parenthesis before ALLOF,
and a space and a closing paren
thesis after the last input.
Takes a variable number of inputs
(default is two) and outputs TRUE if
at least one is TRUE. If there are
more than two inputs, there must be
an opening parenthesis before
ANYOF, and a space and a closing
parenthesis after the last input.

Terrapin Logo Tutorial L-5

Logo Command Glossary

ASCII

.ASPECT

ATAN

BACK

Takes a character as input and
outputs the number that is the ASCII
code of that character.
Changes the vertical scale at which
Logo graphics are drawn. Takes one
numeric input and uses this to
change the scale factor. The default
value for the factor is 0.8. This
command is included because not all
TV monitors have the same amount
of vertical deflection. Consequently,
turtle programs that are supposed to
draw squares and circles may
instead appear to draw rectangles
and ellipses. If so, the .ASPECT
command can be used to attempt to
compensate for the distortion. Note
that changing the factor will change
the limits for permissible y-coordi-
nates. If a value too different from
0.8 is used, lines will be drawn at the
correct angle, but the turtle pointer
may not always appear to be
pointing exactly along the line.
Takes two inputs and then outputs
(in degrees) the arctangent of die
quotient. The output ranges from 0
to less than 360, with the quadrant
corresponding to the signs of the
two inputs. If the second input is
negative, it must be enclosed by
parentheses. See also TOWARDS.
Moves the turtle in the opposite
direction from which it is pointing
by the amount specified.
Abbreviated: BK.

^

L-6 Terrapin Logo Tutorial

Logo Command Glossary
FSg&gE$3&"isi-r? &;■'■■ 's'y-^j'-A ^ iv.^m^mmv^c-]

BACKGROUND Takes a number 0 through 6 as input
and sets the color of the graphics
screen background. Abbreviated:
BG.

.BPT

/ ^ ^ K ,

BUTFIRST

Breaks out of Logo into the Apple
monitor (for use in Logo system
debugging.) For Terrapin Logo,
useful entry addresses are 1BF9,
which is a "cold start" address to use
after Logo has been started before;
and the "warm start" address 1BFC,
for attempting to recover after a
system crash. For Logo PLUS, the
"cold start' address is 4003; the
"warm start" address is 4006. After
restarting Logo at the cold start
address, all procedures are lost; it is
just like typing GOODBYE. The
warm start address leaves all
variables and procedures intact. In
fact all local variables still have the
values they had at the time Logo was
interrupted. To return to Logo
using these addresses, type the
characters for the address followed
by the letter G for GO (for example,
4003G). The best way for most
users to return to Logo is to type
<CTRL> Y, <RETURN> then
<CTRL> G, <RETURN>. This is
equivalent to a "warm start."
If the input is a list, outputs a list
containing all but the first element.
If the input is a word, outputs a
word containing all but the first

Terrapin Logo Tutorial L-7

Logo Command Glossary

BUTLAST

.CALL

character. Gives an error when
called with the empty word or the
empty list. Abbreviated: BF.
If the input is a list, outputs a list
containing all but the last element. If
the input is a word, outputs a word
containing all but the last character.
Gives an error when called with the
empty word or the empty list.
Abbreviated: BL.
Calls a machine language subroutine
in memory. The address of the
subroutine is the first input; the
second input is stored in a memory
location for the routine to examine.
This primitive allows users to
provide their own special-purpose
primitives and interface them to
Logo. See the Technical chapter.
Prints the names of files on the
currently mounted disk.
Takes an integer as input and
outputs the character whose ASCII
code is that integer.
Clears the character input buffer of
any typed-ahead characters.

CLEARSCREEN Clears the graphics screen. Does not
change the turtle's position, the pen
state, or whether the turtle is hidden
or shown. Abbreviated: CS.

/*̂ %̂\

CATALOG

CHAR

CLEARINPUT

CLEARTEXT Clears the text screen and places the
cursor in the upper left comer. ^

L-8 Terrapin Logo Tutorial

Logo Command Glossary

.CONTENTS

/•^^N

CONTINUE

COS

COUNT

Returns a list of all words known to
Logo. This includes names of
variables, procedures, and words
used in procedures. One use might
be an editing program that, for each
procedure defined, asks you wheth
er you want to delete it. TEXT and
THING? are useful primitives to use
with the elements of this list.
Caution: Use of this primitive inter
feres with garbage collection of
"truly worthless atoms". These are
the no-longer-used words that Logo
has in memory, usually as the result
of typing errors. If you run short of
memory, it might be because an old
list from .CONTENTS is around
somewhere keeping Logo from
recovering the storage associated
with no-longer-needed words.
Before using .CONTENTS, you
should type .GCOLL to force a
garbage collection, leaving you with
as tidy a workspace as possible
Resumes execution after a PAUSE
or <CTRL> Z. Abbreviated: CO.
Outputs the cosine of its input (an
angle in degrees).
Takes a word or list as input and
returns the number of elements
contained in that input. Examples:
COUNT "LOGO returns 4;
COUNT 12 returns 2 (the number
of characters in the word 12);
COUNT [12345 6] returns6;

Terrapin Logo Tutorial L-9

Logo Command Glossary

CURSOR

DEFINE

.DEPOSIT

COUNT [CHILI [HOT DOG]
HAMBURGER] returns 3. The list
[HOT DOT], although made up of
more than one element itself, is
counted as one element of the input
list.
Takes two inputs, column and row,
and positions the cursor there.
Columns are 0-39, rows are 0-23.
0,0 is upper left. Use the CH and
CV locations in the ADDRESSES
file to determine the cursor's
current position. See the Utilities
chapter.
Takes two inputs. First is a name,
second is a list. Each element of this
list must be a list itself. The first
element is the list of inputs to the
procedure. (If there are no inputs to
the procedure, the first element
should be the empty list.) Each
subsequent element is a list corre
sponding to one line of the proce
dure being defined. For example,
DEFINE 'TRIANGLE [[:SIZE]
[REPEAT 3 [FD :SIZE RT 120]]].
See TEXT. Note that one normally
uses TO rather than DEFINE in
order to define procedures.
Takes two numeric inputs, an
address and a value, and deposits a
byte of data at the designated
memory location. See the Technical
chapter. ^

L-10 Terrapin Logo Tutorial

Logo Command Glossary

/"^^\

/ ' ™ ^ \

DOS Takes one input (word or list), and
interprets it as commands to DOS.
DOS [RENAME GMAE.LOGO,
GAME.LOGO] will rename
something saved with SAVE
"GMAE. To "unlock" locked files
(those that appear with an asterisk in
the CATALOG listing) type, for
example, DOS [UNLOCK
ADDRESSES.LOGO]. The
following DOS commands are
available in this manner: DELETE,
CATALOG, LOCK, UNLOCK,
RENAME, BLOAD, BRUN,
BSAVE. See the Apple DOS manual
for information on the syntax of
DOS commands.

D RAW Clears the graphics screen, homes
the turtle to the center of the screen,
shows the turtle, and puts the pen
down. It does not change the
background or pen color.

EDIT Enters edit mode. If a procedure
name is included as an input, that
procedure will be in the editor. If no
input is specified, enters edit modewith the previous contents of the
screen editor buffer, or the most
recently defined (or PO'd)
procedure if the previous contents
are unretrievable. Can also take a
list of procedures to place in the
editor or the auxiliary words ALL,
NAMES, or PROCEDURES. The
Appendix also contains a description

T e r r a p i n L o g o T u t o r i a l L - l 1

Logo Command Glossary

ELSE

EMPTY?

END

ERASE

ERASEFILE

of keystroke commands inside the
editor. Abbreviated: ED.
Used in IF...THEN...ELSE....
See IF.

Takes one input, a word or list, and
returns TRUE if the value is either
the empty word " or the empty list
[]; otherwise returns FALSE.
Terminates a procedure definition
that is typed into the editor. It is not
necessary to type END at the end of
the final definition. But, if you are
defining more than one procedure at
a time, the separate procedure
definitions must be separated by
END statements.
Erases designated procedure from
workspace. Can also take qualifiers
ALL, NAMES, PROCEDURES or
a list of procedures. Signals an error
if there is no procedure with the
given name. For convenience, the
input to erase is not evaluated (i.e.
Logo will not try and run the proce
dure being erased.); to erase a proce
dure called LOOKUP, type ERASE
LOOKUP. See also RUN.
Abbreviated: ER.
Removes from the disk a file saved
with SAVE. Takes a file name as
input, which must begin with a"
mark. ^

L-12 Terrapin Logo Tutorial

Logo Command Glossary

ERASEPICT

ERNAME

/"^^\
.EXAMINE

FIRST

FORWARD

FPUT

/^ ^ \

Removes a picture that has been
saved on the disk using SAVEPICT.
Takes a picture name as input,
which must begin with a " mark.
Takes a name as input and removes
that name from the workspace.
Signals an error if the name is not
used. Note that unlike ERASE, the
input to ERNAME is evaluated.
Thus, to erase the name TEMP, type
ERNAME "TEMP. If you type
ERNAME TEMP, Logo assumes
TEMP to be a procedure and tries to
run it.
Takes one input. Outputs the value
of the byte at the specified address.
See also the Technical chapter.
If the input is a list, outputs the first
element. If the input is a word,
outputs the first character. Gives an
error when called with the empty
word or the empty list.
Moves the turtle in the direction in
which it is pointing by the amount
specified. Abbreviated: FD.
Takes two inputs. Second input must
be a list. Outputs a list consisting of
the first input followed by the
elements of the second input. There
fore, if the first input is a list, for
example FPUT [A B] [C D], the
result will be [[A B] C D]. See also
LPUT, LIST, and SENTENCE.

Terrapin Logo Tutorial L-13

Logo Command Glossary
W'^m^^E^mM^w^^'^v^^Mm

FULLSCREEN

.GCOLL

GO

GOODBYE

HEADING

HIDETURTLE

HOME

IF

In graphics mode, gives full
graphics screen. See SPLIT-
SCREEN and TEXTSCREEN.
Equivalent to <CTRL> F.
Forces a garbage collection in order
to free up the maximum amount of
usable workspace.
Takes a word as input and transfers
to the line with that label. You can
only GO to a label within the same
procedure. Labels are defined by
typing them at the beginning of the
indicated line followed by a colon.
(GO is very rarely used in Logo
programming.)
Clears workspace and restarts Logo.
It does not, however, clear the
machine-language area.
Outputs the turtle's heading as a
decimal number. The heading
ranges from 0 to less than 360.
When the turtle has a heading of 0 it
is pointing straight up.
Makes the turtle pointer disappear.
Abbreviated: HT.
Moves the turtle to the center of the
screen, pointing straight up.
Used in the basic conditional form
IF <condition> THEN <actionl>
ELSE <action2>. The <condition>
is tested. If it is true <actionl> is
performed. If it is false <action2>
is performed. The word THEN is ^

L-14 Terrapin Logo Tutorial

/**^^\
t**_>jcNf_^ +.*. \ ~ m

Logo Command Glossary

/^^fc\

IFFALSE

IFTRUE

INTEGER

ITEM

LAST

z f ^ ^ \

optional. The ELSE <action2> part
need not be present. The
<condition> must be a Logo
expression which outputs "TRUE or
"FALSE. A Logo variable whose
value is "TRUE or "FALSE satisfies
this condition, as do various testing
functions such as <, >, =, ALLOF,
ANYOF, NOT, and primitives that
end in a ? mark. Both <actionl> and
<action2> may be any number of
Logo expressions.
Executes rest of line only if result of
preceding TEST was false.
Abbreviated: IFF.
Executes rest of line only if result of
preceding TEST was true.
Abbreviated: I FT.
Takes one numeric input and
outputs the integer part, ignoring
the fractional part.
Takes two inputs, a number (repre
sented here by n) and a word or list,
and outputs the nth element of the
list. An error message is displayed
if n exceeds the number of elements
in the list.
If input is a list, outputs the last
element. If input is a word, outputs
the last character. Gives an error
when called with the empty word or
the empty list.

Terrapin Logo Tutorial L-15

Logo Command Glossary

^

LEFT

LIST

LIST?

LOCAL

LPUT

Rotates the turtle. Takes an input
that specifies the number of degrees
to rotate. Abbreviated: LT.
Takes a variable number of inputs
(two by default) and outputs a list of
the inputs. Therefore, if the first
and second inputs are lists, for
example LIST [A B] [C D], the
result will be [[A B][C D]]. If there
are more than two inputs, there
must be an opening parenthesis
before LIST, and a space and
closing parenthesis after the last
input. See also FPUT, LPUT, and
SENTENCE.
Outputs TRUE if its input is a list.
See also WORD? and NUMBER?.
Takes a word as input, allowing for
the creation of local variables not
declared in the title line of a
procedure. When MAKE is used
after the command LOCAL, the
named variable is treated as a local
variable and is not visible to the
entire workspace. Use only in
procedures.
Takes two inputs. Second input must
be a list. Outputs a list consisting of
the elements of the second input
followed by the first input. There
fore, if the first input is a list, for
example LPUT [A B] [C D], the
result will be [CD [A B]]. See also
FPUT, LIST, and SENTENCE.

~ >

L-16 Terrapin Logo Tutorial

Logo Command Glossary
zm^^\

MAKE

MEMBER?

.NODES

NODRAW

NOT

NOTRACE
NOWRAP

/^^\

Takes two inputs, the first of which
must be a word. It treats the word as
a variable name, and makes the
second input be the value of the
variable.
Takes two inputs, which can be a
single character, a word or a list.
Returns TRUE if the first input is an
element of the second input. For
example, "A is a member of "CAT,
"CAT is a member if [BIRD CAT
DOG] and [D E F] is a member if
[[A B C] [D E F][G H I]]. Otherwise
returns FALSE. For example, 2 is
not a member of [1 3 5] and "AT is
not a member of "CAT.
Outputs the number of currentlyfree nodes. To obtain a true count of
free memory, type .GCOLL before
typing .NODES.
Exits graphics mode, giving a clear
text page with the cursor homed in
the upper left-hand comer of the
screen. Abbreviated: ND.
Outputs TRUE if its input is
FALSE; outputs FALSE if its input
is TRUE.
Turns off tracing. (See TRACE.)
Exits wrapping mode. Any
command that would normally
cause the turtle to move off one edge
of the screen and onto the opposite
edge instead results in an error.

Terrapin Logo Tutorial L-17

Logo Command Glossary

~)

NUMBER?

OUTDEV

OUTPUT

PADDLE

Outputs TRUE if its input is a
number. See also WORD? and
LIST?.
Takes as input a number designating
a slot on the Apple mother board.
After executing this command,
everything except the instruction
typed will be sent to the device
plugged into the designated slot.
The output may also be echoed to
the screen, depending on the partic
ular computer setup. OUTDEV 0
specifies output to the screen. A
"slot number" number greater than
255 is interpreted as the address of a
user- supplied assembly language
routine to be called in place of the
usual character output primitive.
Typing <CTRL> SHIFT-M will
restore output to the screen.
Takes an input. Causes the current
procedure to stop and output the
input to the calling procedure. If the
input has to be evaluated, it outputs
the result of that evaluation.
Abbreviated: OP.
Takes a number 0 through 3 as
input, which specifies the paddle.
Outputs a number 0-255 dependingon the setting of the appropriate
paddle dial. One example that can
be used with either two paddles or a
joystick is SETXY PADDLE 0
PADDLE 1. This instruction sets
the turtle's position to the output of

/ " ^ ^ ^ K

L-18 Terrapin Logo Tutorial

Logo Command Glossary
fr»̂ ygy»y&3..vr "■

the joystick, which can be controlled
by hand.

PADDLEBUTTON

/^^*N

PAUSE

PENCOLOR

PENDOWN

/ i " * \ PENUP

Take a number 0 through 2 as input
and outputs TRUE or FALSE
depending on whether the button on
the corresponding paddle is pressed.
One example of its use is IF
PADDLEBUTTON 0 = "TRUE
THEN CLEARSCREEN. On the
Apple II, paddle 3 does not have an
associated paddle button. The
<Open-Apple> key on Apple
computers is equivalent to
PADDLEBUTTON 0; the <Closed-
Apple> or <Option> key is
equivalent to PADDLEBUTTON 1.
Stops execution and allows
command lines to be evaluated in the
current local environment. Equi
valent to interrupt character
<CTRL> Z. Execution is resumed
with CONTINUE, provided no
errors have occurred.
Takes a number from 0 through 6
and sets the color of the lines that the
turtle will draw. Abbreviated: PC.
Causes the turtle to leave a trail
when it moves. This is the default
state and it is changed by PENUP.
Abbreviated: PD.
Causes the turtle to move without
leaving a trail. Abbreviated: PU.

Terrapin Logo Tutorial L-19

Logo Command Glossary

POTS

PRINT

PRINT1

PRINTOUT

Abbreviation for PRINTOUT
TITLES. See PRINTOUT.
Variable number of inputs (default
is 1). Prints the input on the screen.
Lists are printed in "sentence" form,
without the outermost level of
brackets. The next PRINT will print
on the next line of the screen. If
there are multiple inputs, as in
(PRINT 1 2 3), the inputs will be
printed on one line, separated by
spaces. Note that for multiple
inputs, the entire statement must be
enclosed in parentheses. If the input
to PRINT is a procedure, it will not
print the procedure, but will execute
the procedure assuming the
procedure will output something to
print. See also PRINTOUT.
Abbreviated: PR.
Like PRINT, but does not terminate
output line with a return. With
multiple inputs, does not print
spaces between elements.
If given a procedure name as input,
prints out the text of the procedure.
If given no input, prints out the last
procedure defined, edited or printed
out. For convenience, the input is
not evaluated; thus to see a proce
dure called CIRCLE, you would
type PO CIRCLE and not PO
"CIRCLE. Can also take auxiliary
words: ALL, NAMES, TITLES,
PROCEDURES or a list of proce-

~ i

L-20 Terrapin Logo Tutorial

Logo Command Glossary

QUOTIENT

RANDOM

r
RANDOMIZE

RC?

dure names. POTS is an abbre
viation for PRINTOUT TITLES.
See also PRINTand RUN.
Abbreviated: PO.

Outputs the integer quotient of its
two inputs. (If the inputs are not
integers, it first rounds them to the
nearest integer.) If the second input
is negative, it must be enclosed by
parentheses.
Takes one input—a positive integer
n—and outputs an integer between 0
and n-l. Identical sequences of calls
to RANDOM will yield repeatable
sequences of random numbers each
time Logo is restarted unless the
seed for the random number
generator is RANDOMIZER
Randomizes the seed for
RANDOM. If given an explicit
input, sets the random number seed
to that number. For example, after
each execution of (RANDOMIZE
259) the same sequence of random
numbers will be generated, differ
ent numbers result in different
sequences. Note that () are needed
around RANDOMIZE if an input is
used, such as (RANDOMIZE 259).
Outputs TRUE if a keyboard
character is pending (i.e., if
READCHARACTER would output
immediately, without waiting for
the user to press a key), otherwise
outputs FALSE.

Terrapin Logo Tutorial L-21

Logo Command Glossary

READ Reads a file from disk. Destroys any
graphics display if only 64K is
available. Takes file name as input,
which must begin with a" mark.

READCHARACTER
Outputs the least recent character in
the character buffer, or if empty,
waits for an input character. See
CLEARINPUT. See the explanation
of the INSTANT program on the
Utilities disk for an example of its

Abbreviated: RC.
READPICT

REMAINDER

REPEAT

REQUEST

RIGHT

use.
Reads a picture that has been stored
on disk and displays it on the
graphics screen. Takes picture name
as input, which must begin with a"
mark.
Outputs the integer remainder of its
first input divided by its second. (If
the inputs are not integers, it first
rounds them to the nearest integer.)
If the second input is negative, it
must be enclosed by parentheses.
Takes a number and a list as input.
RUNs the list the designated number
of times.
Waits for an input line to be typed
by the user and terminated with
RETURN. Outputs the line as a list.
Abbreviated: RQ.
Rotates the turtle. Takes an input
that specifies the number of degrees
to rotate. Abbreviated: RT.

~)

^

^

L-22 Terrapin Logo Tutorial

Logo Command Glossary

/(^■^

ROUND

RUN

/^^^\

SAVE

SAVEPICT

Outputs the nearest integer to its
input.
Takes a list as input. Executes the
list as if it were a typed in command
line. Note: the number of characters
in the list (i.e., the number of
characters you would get if you
printed it) given to RUN must not
exceed the maximum number of
characters allowed in the toplevel
command line, which is 255. Other
wise, an error is signalled. To write
a procedure that erases a named
procedure (for use in interactive
programming, for example), use the
following format (which can also be
used with PRINTOUT):
TOERPROC PROCEDURE
RUN LIST "ER PROCEDURE

END
ERPROC "SAMPLE
Saves the contents of the workspace
on disk. Destroys any graphics
display if only 64K is available.
Takes file name as input, which
must begin with a " mark. To save a
selected group of procedures,
include them in a list as part of the
SAVE command, like this: (SAVE
"SHAPES [SQUARE TRI HEX])
You must include the parentheses.
Save on disk the picture on the
screen. Takes picture name as input,
which must begin with a" mark.

Terrapin Logo Tutorial L-23

Logo Command Glossary
:':&yj:?\- ,:;''̂ - ••■'̂ 1̂ -

SENTENCE

SETDISK

SETHEADING

SETX

SETXY

Variable number of inputs (default
2). If inputs are all lists, combines
all their elements into a single list. If
any inputs are words (or numbers),
they are regarded as one-word lists
in performing this operation.
Therefore, if the first and second
inputs are lists, for example
SENTENCE [A B] [C D], the result
willbe[ABCD].Ifthere
are more than two inputs, there
must be an opening parenthesis
before SENTENCE, and a space and
closing parenthesis after the last
input. See also FPUT, LPUT, and
LIST. Abbreviated: SE.
Takes two numeric inputs-a drive
number and a slot number-and
activates the disk drive at that
location. All subsequent file
operations will use that disk drive.
Default is SETDISK 16.
Rotates the turtle to the direction
specified. Input determines number
of degrees. Zero is straight up, with
heading increasing clockwise.
Abbreviated: SETH.
Moves the turtle horizontally to the
specified coordinate.
Takes two numeric inputs. Moves
the turtle to the specified point. 0,0
is screen center. When the y-coor-
dinate (second input) is negative, it
must be enclosed by parentheses.

^

^

L-24 Terrapin Logo Tutorial

Logo Command Glossary

SETY

SHOWTEXT

SHOWTURTLE

SIN

SPLITSCREEN

SQRT

STOP

r ^ ^ V TEST

Moves the turtle vertically to the
specified coordinate.
Prints the contents of the edit buffer
to the current output device, which
is normally the screen. Send output
to a printer using OUTDEV.
Makes the turtle pointer appear,
This is the default state and it is
changed by HIDETURTLE.
Abbreviated: ST.
Outputs the sine of its input (an
angle in degrees).
In graphics mode, gives mixed
text/graphics screen. See FULL
SCREEN and TEXTSCREEN.
Equivalent to <CTRL> S.
Takes a positive number as input
and outputs the square root of that
number.
Causes the current procedure to stop
and return control to the calling
procedure. Note that STOP does
not mean the same thing as END.
STOP is a primitive which when
executed causes the current
procedure to stop executing, and
returns control to the previous
procedure (or toplevel). END is
used in the editor to indicate where a
procedure ends. It is never
executed.
Tests a condition to be used in
conjunction with IFTRUE and

Terrapin Logo Tutorial L-25

Logo Command Glossary

TEXT

TEXTSCREEN

THEN

THING

THING?

TO

IFFALSE. TEST takes one input,
which must be either TRUE or
FALSE. The result of the most
recent TEST in each procedure is
used by IFTRUE and IFFALSE, and
is local to the current procedure.
Takes a procedure name as input
and outputs procedure text as a list.
The procedure name must start with" or Logo will run the procedure. If
the procedure has not been defined,
TEXT outputs []. If instead the input
is the name of a Logo primitive, it
outputs the primitive's name (i.e.,
the input). See DEFINE.
In graphics mode, gives full text
screen. See SPLITSCREEN and
FULLSCREEN. Equivalent to
<CTRL>T.
Used with IF.
See IF.

.THEN...ELSE.

Outputs the value of its input, which
must be a word. THING "XXX is
equivalent to :XXX. (Note that this
command allows you extra levels of
evaluation.)
Outputs TRUE if its input has a
value associated with it.
Begins procedure definition. Takes
a variable number of inputs. Enters
edit mode with the procedure named
by the first input. Any following
inputs are taken as inputs to the

T^^^v

/̂ ^̂ \̂

L-26 Terrapin Logo Tutorial

Logo Command Glossary

TOPLEVEL

/*^^N TOWARDS

TRACE

/"" ' ^N

procedure named by the first
input. With no inputs at all, TO
enters edit mode with an empty edit
buffer.
Aborts the current procedure and
all calling procedures and
returns control to immediate mode.
Note the difference between
TOPLEVEL and STOP. STOP
stops just the current procedure and
continues execution with the calling
procedure, whereas TOPLEVELaborts execution of the whole
program. It is not used very often in
Logo programming.
Takes two numbers as inputs. These
are interpreted as the x- and y-
coordinates of the point on the
screen. TOWARDS outputs the
heading from the turtle to the point.
That is, SETHEADING TOWARDS
:X:Y will make the turtle face
towards point x,y. Compare with
ATAN.
Takes no input. Causes Logo to
pause before executing each proce
dure, and print the name of the
procedure and its inputs. Typing
any character other than <CTRL> G
or <CTRL> Z will cause Logo to go
on to the next line. Typing
<CTRL> G will cause Logo to abort
to toplevel. <CTRL> Z will pause,
and CO will continue execution.

Terrapin Logo Tutorial L-27

Logo Command Glossary

TU RTLESTATE Takes no inputs. Outputs a list of
four items giving information about
the state of the turtle. The format of
the list is as follows: The first
element is TRUE or FALSE for pen
down or pen up, then TRUE or
FALSE for show or hide turtle, then
background color, then pen color.
Abbreviated: TS.

WORD

WORD?

WRAP

XCOR

YCOR

Variable number of inputs (default
is 2). Outputs a word that is the
concatenation of the characters of its
inputs (which must be words). If
there are more than two inputs,
there must be an opening parenthe
sis before WORD, and a space and
closing parenthesis after the last
input.
Outputs TRUE if its input is a word.
Since numbers are treated as words,
the result will also be TRUE for a
number. See also LIST? and
NUMBER?.
Places the graphics system in
wrapping mode. Any time the turtle
moves off the edge of the screen, it
reappears at the opposite edge.
Wrap mode is the default, and is
exited by the NOWRAP command.
Outputs the turtle's x-coordinate as
a decimal number.
Outputs the turtle's y-coordinate as
a decimal number.

~ i

L-28 Terrapin Logo Tutorial

/ ^ ^ \

""""1

' W-57 ALLOF, W-70, W-l 12, L-5" G-30,C-6,W-33 AMODES,U-43,T-23
: G-50,C-6,W-61 ANIMAL program, U-23
+ G-5, C-l, L-4 ANIMAL.INSPECTOR
- C-l, L-4 program, U-24* G-5, C-l, L-4 ANYOF, W-70, W-l 12, L-5
/ G-5, C-l, L-4 Apple lie, P-5, P-8
0 C-2 Apple IIGS, P-l, P-5,P-9
<>B-8 APPLEKEY example, T-22 to
> G-67,L-5 T-24
< G-67,L-5 Apple Logo, A-80= G-66toG-67,L-5 Arcs, G-57 to G-58, U-28 to
? B-7,G-87 U-29,A-75toA-78
[] B-9,G-26 Arithmetic, G-5, G-47 to G-48,
; P-8toP-9,A-79,L-5 C-l
! T-7 Arrow keys, B-9, G-16, U-10,

U-16,T-6,T-8,A-14
.ASPECT, P-2,T-45,L-6 ASCII, W-59,U-45,T-46,
.BPT, L-7 A-91,L-6
.CALL,T-20,T-30,L-8 ASCII values, selected table of,
.CONTENTS, L-9 T-47
.DEPOSIT, U-44, T-19, T-36, Aspect ratio, P-2, T-45

L-10 Assembler, T-l 8, T-23, T-25,
.EXAMINE, U-44, T-19, T-30, T-26

T-36,L-13 Assembler/Logo interfacing,
.GCOLL,T-49,L-14 U-43,T-18toT-41
.NODES, L-17 ATAN, L-6

r
Abbreviations, G-2, G-24
ABS,C-24toC-25
Absolute value, C-24 to C-25
Addition, G-5, C-l
ADDRESSES, U-43, T-36, T-42

toT-43
Addresses, useful, U-44 to U-46

BACK, G-2, L-6
BACKGROUND, G-8, G-10,

T-12,T-13,L-7
Beep, T-41
BEFORE, U-30
BEFORE?, U-30
BELL, M-8, T-41

Terrapin Logo Tutorial 1-1

Index

BF,W-43,M-12,L-7
BG,G-8,G-10,T-13,L-7
Binary files, U-3
Binary tree, G-73, A-61 to A-63
BIN.TO.TEXT, U-36
BK, G-2, L-6
BL,W-43,L-8
Black-and-white pictures,

printing, P-5 to P-7
Blank disk, preparing for use,

B-l l toB-14
Brackets <>, B-8
Brackets [], B-9, G-26
Bugs, G-29, A-l
BUTFIRST, W-43, W-92,

M-12, L-7
BUTLAST, W-43, W-92, L-8

<CAPSLOCK> key, B-ll
CATALOG, G-29, G-31 to

G-32,P-l,U-2,T-15,L-8
Changing inputs, G-62
CHAR, W-59,A-91, L-8
Characters, interrupt, U-45,

T-38, T-46
Circles, G-57 to G-58, A-75 to

A-78
Clearing the workspace, G-32 to

G-34
CLEARINPUT, L-8
CLEARSCREEN, G-26, G-27,

L-8
CLEARTEXT, W-32, L-9
CLICK, T-33 to T-35
CLOSE, U-41,U-42

<Closed-Apple> key, L-19
CO, G-81, L-9
Color, G-9 to G-10, G-75 to

G-78,T-11,T-13
Color pictures, printing, P-7 to

P-8
Commands, editing, G-40 to

G-41,T-6,T-8toT-10,
A-14 to A-l 7

Comments, W-21, A-79
Computation, B-5, C-l
Conditional, G-66 to G-69
CONTINUE, G-81, L-9
Control commands, See

<CTRL>
Control Panel (IIGS), P-l, P-5,

P-10
Converting files from DOS 3.3

to ProDOS, B-l2
Coordinates, graphics, G-85 to

G-86
COPYA, B-l5 to B-l6
Copying disks, B-14 to B-l 6
Copying files, U-3
Copying procedures, G-46
COS, C-4, C-6, C-l 9, C-22, L-9
Cosine, C-l 9, C-22
COUNT, A-94, L-9
CS, G-26, G-27, L-8
<CTRL>key,B-8,B-10
<CTRL> A, G-40 to G-41, T-6,

T-9, A-14
<CTRL>B,T-8,T-9,A-15
<CTRL> C, B-8, G-14, G-18,

U-l 6, U-39, T-2, T-8, T-9, ^
A - 1 7 ~)

1-2 Terrapin Logo Tutorial

/ " ^ ^ ^ s

r

/^^^\

<CTRL> D, G-40 to G-41, T-6,
T-9, A-16

<CTRL> E, G-40 to G-41, T-6,
T-9, A-16

<CTRL> F, G-7, T-3, T-8, T-9,
T-38 A-15

<CTRL>'G, B-8, B-10, G-14,
G-19,G-62,U-16,U-39,
T-2,T-4, T-8, T-9, T-38,
T-42,T-47,A-17

<CTRL> L, T-8, T-9, A-l 5
<CTRL>N, G-40 to G-41,

U-16,T-10,A-14
<CTRL>0, G-40 to G-41,

U-16,T-10,A-15
<CTRL> <Open-Apple>

<RESET>, B-16
<CTRL> P, G-5, G-40 to G-41,

T-7,T-10,A-14
<CTRL>S,G-7,U-12,T-3,

T-4,T-38
<CTRL> SHIFT-M, T-5, T-l 1,

T-38, T-47
<CTRL>SHIFT-P,T-5
<CTRL>T,G-7,U-12,T-4,

T-5, T-38
<CTRL> W, G-43, T-5, T-38
<CTRL> X, G-41, T-6, T-10,

A-16
<CTRL> Y, B-8, G-41, T-10,

A-16
<CTRL> Z, G-81, T-5, T-38,

T-47
Curriculum materials, B-3
Cursor, B-7, G-18, U-30 to

U-31,U-45, T-38, A-14
CURSOR, L-10

Index

CURSOR.H,U-31
CURSOR.HV, U-31
CURSORPOS, U-31, U-46
CURSOR. V, U-31
Curves, G-57 to G-58
Cut (see also <CTRL> X), T-10

Data disk, B-5 to B-6
Debugging, G-20, G-79 to G-81,

G-83, A-l to A-l3
DEFINE, U-10, L-10
<DELETE> key, B-9, G-17 to

G-17,U-16,T-6,T-9
Demonstration programs, U-23

toU-28
DIP switch settings, P-3 to P-4
Disk, backup copy, B-14 to B-16
Disk drives, switching, L-24
Disk preparation, B-6
Disk, Utilities, see Utilities Disk
Division, G-5, C-l
DOS,L-ll
DOS 3.3, B-l 2, B-14, P-3,

U-37, T-14, A-6
DOS 3.3 System Master Disk,

B-15
Dots, G-50, C-6
DPRINT, U-41 to U-43
DRAW, G-l, G-4, G-7, C-19,

C-21,L-11
Draw mode, G-l
Driving the turtle, G-2
DROVE, A-73
Duration, M-2
DYNATRACK, U-25 to U-26

Terrapin Logo Tutorial 1-3

Index

ED,G-34toG-35,L-ll
EDIT, G-34 to G-35, T-2, L-l 1
Edit buffer, T-48
Editing commands, summary,

G-41, T-6, T-8 to T-10,
A-14 to A-17

Edit mode, G-14 to G-19, T-l
Editor, G-40 to G-41
Education, B-3
Elephant mascot, B-2, A-68
Ellipse, C-l 9, C-25 to C-26
ELSE, W-70 to W-71,L-12
EMPTY?, W-23, L-12
Empty list, W-59 to W-60
Empty word, W-59
END, G-14, G-22,C-8, L-12
Epson printer, P-12
ERASE (ER), G-32 to G-34,

L-12
ERASE ALL, G-32 to G-33,

L-12
ERASE NAMES, L-12
ERASE PROCEDURES, L-12
ERASEFILE, G-34, T-16, L-12
ERASEPICT, G-35 to G-36,

T-16,L-13
Erasing, G-l 1
Erasing pictures, G-35 to G-36,

T-16
ERNAME, L-13
Error messages, B-8, W-63, A-l

to A-l3
Errors, typing, B-9
<ESC> key, B-9, U-16, T-6, T-9
Executing a procedure, G-20

EXPONENT, C-15 to C-l8
Exponentiation, C-15 to C-18

FALSE, G-66 to G-69, W-70,
L-15

FD, G-2, G-3, L-13
FID,U-37toU-38
Files, G-29, G-33, M-l
FIRST, W-43, W-92, M-12,

L-13
FLASHING, U-31, U-46, T-38
Floating point arithmetic, C-l,

T-46
Formatting a blank disk, B-6,

B - l l t o B - 1 4 « — s
FORWARD, G-2, G-3, L-13 '
FPUT, W-29, W-92, L-13
FRERE, U-13
Functions, C-4 to C-5
FULLSCREEN, G-7, L-14, T-3
Fullscreen mode, T-3

Garbage collecting, T-49
Global variables, C-6 to C-7,

W-12toW-17
Glossary of Logo Commands,

L-ltoL-28
GO, L-14
GOODBYE, G-32, G-34, L-14
Graphics, B-4, G-l, A-18
Graphics commands, summary,

G-5
Graphics mode, G-l

1-4 Terrapin Logo Tutorial

Index

7^*^

Graphics screen, T-45
Graphics screen, text on, T-14
Graphing functions, C-l9 to

C-26
Grappler interface card, P-l 1 to

P-12

H

HARDCOPY, T-43
Harmony, M-14
Heading, G-44
HEADING, G-83 to G-85, L-14
HIDETURTLE, G-37, C-19,

C-21,L-14
Hierarchy of operations, C-2 to

C-3
(^ History lists, W-95 to W-99

HOME, G-26, G-27, C-19,
C-21,L-14

HT, G-37, C-19, C-21, L-14

I

IF, G-66 to G-69, W-70, H4
IFFALSE (IFF), W-89, W-90,

L-15
IFTRUE (IFT), W-89, W-90,

L-15
ImageWriter printer, P-3, P-9,

U-3
ImageWriter II printer, P-7
Immediate mode, B-4, G-15

to G-l 6
Initializing a disk, B-6, B-l 1 to/ • s B - 1 4

1 INITSHAPES, U-20 to U-23

Input, G-48, G-76
Input, changing, G-62
Input, negative, G-81
INSPI, U-26
INSTANT, B-4, U-9 to U-10,

T-47
Integer, C-l
INTEGER, C-4 to C-5, L-15
Integer operators, C-4 to C-5
Intelligent language interpreter,

W-106toW-114
Interrupt characters, T-38, T-46
INVERSE, U-32,U-46
Invisible turtle, G-37, U-18
I/O (Input/Output), T-24
ITEM, W-48, L-15

K

Keyboard, B-9
Keys, editing, G-40 to G-41,

A-14 to A-17, T-6, T-8 to
T-10

Keys, special, B-9 to B-l 1

Language card, T-20
Language Disk, B-l
LARC,U-28toU-29
LARGECOLOR, P-7 to P-8
LARGEPICT, P-5 to P-7
LAST, W-43, W-92, L-15
LCIRCLE,U-28toU-29
LEFT, G-2, G-4,L-16
Levels of execution, W-63
Line editor, T-5 to T-6

Terrapin Logo Tutorial 1-5

Index

Line length, T-6, T-7, T-48
LIST, W-52, W-90, L-16
LIST?, W-54, W-76, W-89,

L-16
Listing a procedure, G-43
Listing: Summary of commands,

G-44
List processing, B-5
Lists, W-59
Load, see READ
LOCAL, C-7 to C-13, L-16
Local variables, C-6 to C-13
Logo for the Apple II. G-73,

A-63
Logo for the Apple, Terrapin,

see Terrapin Logo for the
Apple

Logo PLUS, B-l, B-6, B-ll,
B-12toB-14,P-3,P-4,U-2,
U-14, U-30, U-36, U-46,
T-6, T-7, T-14,T-30, T-48,
A-l,A-4toA-10,A-13,
L-ltoL-4,L-7

Logo, starting, B-6, B-16
Lower case letters, B-ll
LPUT, W-29, W-92, W-95,

L-16
LT, G-2, G-4, L-16

M

Mad-lib, W-100 to W-105
Magic number, G-46
Major key, M-5
MAKE, C-7 to C-13, W-9, L-17
MAKE.OCTAVE, T-32
MAKE.PITCH, T-32

MAKESHAPE, U-15
Mascots, B-2, A-68 to A-71
MEMBER?, W-23, W-73, L-17
Memory, addresses of

interesting locations, U-44
to U-46

Messages, error, A-l to A-13
Mode, DRAW, G-l
Mode, IMMEDIATE, B-4, G-15

toG-16
Mode, NODRAW, G-7, G-8,

T- l
Multiplication, G-5, C-l
Music, B-5, M-l to M-14
MUSIC, U-3, U-13 to U-14,

T-36
MUSIC .B IN , U -13 , T-36 _
M U S I C . S R C , U - 1 3)
Music, assembly language

extension, T-30 to T-36
Music notation, M-4
Music procedures (Utilities

Disk), M-l to M-14, U-5

N

Naming, G-14, G-30, G-50,
G-52, C-6

ND, G-7, G-8, L-17
Negative inputs, G-81
Newsroom program

(Springboard), P-3
NODRAW, G-7, G-8, T-3, T-4,

L-17
Nodraw mode, T-l
N O R M A L , U - 3 2 , U - 4 6 ^ \
NOT, W-70, A-82, A-88, L-17

1-6 Terrapin Logo Tutorial

Index

NOTE, U-13
NOTRACE, G-69, G-83, A-78,

L-17
NOWRAP, G-62, G-64, L-17
NUMBER?, W-17, A-82, L-18
Numbers, in Logo, T-46
Numeric operations, C-l to C-3

O

Object, W-33 to W-36, W-86
<Open-Apple> key, L-19
OP, C-13 to C-18, W-37, W-43,

W-65,L-18
OPCODES, T-23,T-28
OPEN, U-41 to U-42

^ OPEN.FOR.APPEND, U-41 to
(U - 4 2

Operations, C-l to C-3
Operators, C-l, C-4 to C-5
<Option> key, L-19
OUTDEV, P-l, T-l l,T-24,

L-18
Output, G-76, C-4 to C-6
OUTPUT, C-13 to C-18, W-37,

W-43, W-65, L-18
Overview of Logo, B-3 to B-5

P

PADDLE, T-l 1, L-18
PADDLEBUTTON, T-l 1, L-19
Parabola, C-19, C-23 to C-25
Parallel printers, P-l 1 to P-12
Parentheses, W-55, W-69, W-87

toW-88/ * ^

Paste (see also <CTRL> Y),
T-10

PAUSE, G-81, L-19
Pausing, caused by garbage

collection, T-49
PC, G-8, G-12, L-19
PC 6, G-l 1 to G-12, G-64,

G-74,U-17,U-18,U-19,
T-12

PD, G-26, G-28, L-19
PENCOLOR, G-8 to G-12, T-12

toT-13,L-19
PENDOWN, G-26 to G-28,

L-19
PENUP, G-26, G-28, L-19
PICK,U-32toU-33
Pictures, printing, P-2 to P-14
Pictures, saving on disk, G-35 to

G-36, P-2
Pitch, M-5
Planning a procedure, G-21 to

G-23,G-49toG-50
PLAY, M-5, T-31
PLAY.NOTE, M-13, T-31,

T-36
Plotter files, P-12 to P-14
PLURAL project, W-79
PO, G-29, G-31 to G-32, G-43,

L-20
PO ALL, G-43, P-2, L-20
Pointed brackets, B-8
PO NAMES, P-2, L-20
POLY, G-53 to G-57
POTS, G-29, G-31 to G-32, P-2,

L-20
PPRINT, U-33 to U-34

Terrapin Logo Tutorial 1-7

Index

Predicates, W-72 to W-74
Preparing a blank disk, B-6,

B-ll to B-14
Primitive, G-12 to G-13
Primitives, glossary of, L-l to

L-28
PRINT (PR), G-79,W-12,

W-55, L-20
PRINTl, W-55, W-88, L-20
PrinterPort,P-l,P-5,P-9
Printers, P-l to P-14
PRINTFILE, U-40
Printing pictures, P-2 to P-14
Printing procedures, P-l
PRINTOUT, G-43, L-20
PRINTOUT ALL, G-43, P-2,

L-20
PRINTOUT NAMES, P-2, L-20
PRINTOUT PROCEDURES,

P-2 L-20
PRINTOUT TITLES, G-29,

G-31 to G-32, P-2, L-20
PRINTPICT, P-5 to P-7
PRINTSCREEN, P-4
Print Shop, The (Broderbund),

P-3
PRINTTEXT, U-40
Procedural language, B-3
Procedure, B-3, G-12 to G-13
Procedure copying, G-46
Procedure naming, G-13 to

G-14
Procedure printing, P-l
Procedure saving on disk, G-29
Procedure writing, G-12 to

G-l 8

Procedures, graphics, A-18 to
A-78

Procedures that take inputs,
G-48

Procedures, words and lists,
A-81 to A-l 12

ProDOS, B-12 to B-14, P-3,
U-37,T-14,A-6

ProDOS User's Disk, B-12,
B-15,P-3

Projects: Changing Inputs,
G-65, A-49

Projects: Curves, G-57, A-44
Projects: History lists, W-99
Projects: ITEM, W-51
Projects: Language

understanding, W-l 15
Projects: Mad-libs, W-105
Projects: MAKE, W-17
Projects: More Shapes, G-48,

A-38
Projects: PLURAL, W-79
Projects: Predicates, W-74
Projects: Procedure, G-28, A-21
Projects: RC,W-8,W-22
Projects: Recursion, G-73,

W-51 A-55
Projects: REQUEST, W-84
Projects: Simple recursion,

G-62, A-47
Projects: Sizable shapes, G-53,

A-39
Projects: Testing and stopping,

G-69, A-53
Projects: Turtle driving, G-8,

A - 1 8 ^

1-8 Terrapin Logo Tutorial

Index

r*
Projects using RANDOM, G-78,

A-65
Projects using shapes, G-42,

A-24
Projects with regular polygons,

G-55, A-41
Prompt, B-7
PU, G-26, G-28, L-19

Quiz programs, W-81 to W-85
QUOTIENT, C-4, C-5, L-21

R

/ ^ ^ N Rabbit mascot, B-2, A-69
RARC,U-28toU-29
RANDOM, G-76, C-4, L-21
RANDOMIZE, C-4, L-21
Random numbers, G-76, U-32

toU-33,L-21
RC,W-8,W-18,M-8,T-46,

A-81,L-22
RC?, W-18, W-72, L-21
RCIRCLE, U-28 to U-29
READ, G-32 to G-33, T-l 5,

T-37, L-22
READCHARACTER, W-8,

W-18, T-46, L-22
Reading pictures, G-35 to G-36,

T-16, T-16, L-22
Reading procedures, G-32 to

G-33, T-15, T-37, L-22
READPICT, G-35 to G-36,

T-16, L-22
READTEXT, U-39

Real numbers, C-l
Recalling lines, G-5, M-4
Recovery process, B-8
Recursion, G-61 to G-73, C-15

to C-18, W-48, W-l00 to
W-105,M-12

Recursion projects, G-62, G-73
Recursive designs, G-73, U-27
REMAINDER, C-4, C-5, L-22
Remarks, P-8 to P-9, A-79, L-5
REPEAT, G-26, L-22
Repeating with <CTRL> P, G-5,

M-4
REQUEST, W-26, W-81 to

W-84, L-22
<RESET>key,B-8,B-10
Restarting Logo, B-16
Rests (in music), M-6, T-31
RESULT:, W-60
<RETURN> key, B-7, G-17,

T-2,T-6,A-15
RIGHT, G-2, G-3, L-22
ROCKET, U-22 to U-23
ROUND, C-4, L-23
RQ, W-26, W-81 to W-84, L-22
RSPLOTTER, P-14
RT, G-2, G-3, L-22
RUN, W-94 to W-99, U-10,

A-72toA-74,L-23
Running a procedure, G-l9 to

G-21

Terrapin Logo Tutorial 1-9

Index

SAVE, G-29 to G-31, T-15,
T-37 L-23

SAVEPICT, G-35 to G-36,
T-16, L-23

SAVETEXT, U-39 to U-40
Saving assembled routines, T-29
Saving pictures, G-35 to G-36,

P-2, A-72
Saving procedures, G-29 to

G-32, T-16
Saving text, U-38 to U-40
SAVMOD, T-37, T-42
Scales, M-5
Screen, G-7
SCREENDUMP, P-l 1 to P-12
Screen editor, T-7
SCRIBE printer, P-10
Self-starting files, T-44, A-80
SENTENCE (SE), W-25, W-43,

W-86,M-13,L-24
SETDISK, A-79, L-24
SETHEADING (SETH), G-83

to G-85, L-24
SETSHAPE, U-l 7
Setup, G-28
SETX, G-85 to G-86, L-24
SETXY, G-85 to G-86, C-19 to

C-26, L-24
SETY, G-85 to G-86, L-24
SHAPE.EDIT, U-14 to U-22
Shapes, creating, U-l5 to U-l7
Shapes, reading, U-20 to U-21
Shapes, saving, U-19 to U-21
Shapes, stamping, U-l8 to U-19
Shape table, U-14, T-17

<SHIFT>key,B-8
<SHIFT>M,B-9
<SHIFT> N, B-9
SHOWFILE, U-40
SHOWTEXT, U-40, L-25
SHOWTURTLE, G-37, L-25
SIN, C-19, C-20 to C-22, L-25
Sine, C-19, C-20 to C-22
SING, M-6
Single quote, W-57
SIZE,U-16toU-17,U-23
SMALLCOLOR, P-7 to P-8
Snail mascot, B-2, A-70
Spaces in Logo lines, G-3, G-6,

G-l 8
Special effects, G-74 to G-78
SPLITSCREEN, G-7, U-12, ^

T - 3 , L - 2 5 '
Splitscreen mode, T-3
Square, G-21 to G-25
SQRT, C-4 to C-5, L-25
ST, G-37, L-25
Starting Logo, B-6
Starting Logo summary, B-16
STARTUP variable, T-44, A-80
State, G-44
STOP, G-66 to G-69, W-6,

M-33,L-25
STOPPED!, G-19
Stopping a procedure, see

<CTRL>G
Storage in Logo, T-48
STRING, U-34 to U-35
Structured programming, B-3
Subprocedures, G-58 to G-61 /-_
S u b t r a c t i o n , G - 5 , C - l)

1-10 Terrapin Logo Tutorial

?* JarftWv-^sa

Index

Summary: commands with
keyboard versions, G-25

Summary: editing commands,
G-41

Summary: listing commands,
G-44

Summary: Logo commands used
so far, G-38 to G-39

Summary: starting Logo, B-16
Summary: turtle commands,

G-5
Summary: words and lists

primitives, W-52
Superprocedure, G-58
Super Serial Card, P-4, P-9
SWEET-P plotter, P-12 to P-13

f*m^ Syncopation, M-l0

Tangent, C-19, C-22 to C-23
TEACH, U-l 1 to U-13
Templates, W-l 11 to W-l 16
Terrapin Logo for the Apple,

B-l, B-7, B-ll, B-12 to
B-14, P-3, P-6, U-14, U-30,
U-36,T-6,T-7,T-14,T-30,
T-48,A-6,A-13,L-7

TEST, W-89, L-25
Testing: IF-THEN-ELSE, G-66

to G-69, W-70
TET,U-27toU-28
TEXT, L-26
TEXTEDIT, U-38 to U-40, T-8,

T-42, T-49
Text editor, using Logo as, T-42

toT-43
/ i ^ ^ \

Text on the graphics screen,
T-14

TEXTSCREEN, G-7, U-l 2,
T-4, L-26

THEN, G-66 to G-69, W-5,
W-71,L-26

THING, W-78, M-13, L-26
THING?, L-26
TMOVE, U-10 to U-l 1
TO, G-14, C-8, T-3, L-26
TONE,M-2
TONES, M-3
Top Level, M-l2
TOPLEVEL, W-4, W-6, T-40,

L-27
Total Turtle Trip Theorem,

G-47
TOWARDS, G-83, G-85, L-27
TRACE, G-69, G-83, A-78,

L-27
Tree, G-73, A-61
TRUE, G-66 to G-69, W-70,

L-15
TS,G-83toG-84,L-28
Tune blocks, M-8
Turtle, G-2
Turtle commands, G-5
Turtle driving projects, G-8,

A-18
Turtle, floor, G-28
TURTLESTATE, G-83 to

G-84, A-88, L-28
TWINKLE, M-9, U-13
Typing errors, correcting, B-9

toB-10

Terrapin Logo Tutorial 1-11

Index
w&î &ttnz®m&*±G®mmmm

^

u
Upper case letters, B-ll
Utilities Disk, B-l, B-2, B-4,

B-12 to B-13, M-l, U-l to
U-46

Utilities Disk files: explanation,
U-9 to U-46

Utilities Disk files: summary,
U-4toU-8

Utilities Disk, Logo PLUS, U-l
toU-2

Utilities Disk music procedures,
M-l 1 to M-14, U-13 to
U-14

Utilities Disk: use, U-l to U-3
Utilities, writing your own,

G-74toG-76

V

Value, W-38
Variables, G-48 to G-52, C-6 to

C-7,W-12toW-17,W-60
Variables, global, C-6 to C-7
Variables, local, C-6 to C-7

W

WAIT, U-35
Wild card, W-109
WORD, W-43, W-46, M-l 3,t 28
WORD?, W-54, W-72, W-89,

L-28

Word processor, using Logo as,
U-38toU-40

Words, W-56
Words and lists, B-5
Word wrap, W-33
Workspace, G-29, G-32, M-l
Workspace, clearing, G-32 to

G-34
WRAP, G-62 to G-64, L-28
Writing a procedure, G-12 to

G-18,C-8toC-9

X

XCOR, G-85 to G-86, L-28

Y

YCOR, G-85 to G-86, L-28

Z

Zero vs. letter O, G-l8

^

1-12 Terrapin Logo Tutorial

/ ^ ^ K

Terrapin, Inc.
376 Washington Street
Maiden, MA 02148
(617)322-4800

